Title:
|
Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$ (English) |
Author:
|
Kostić, M. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
57 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
221-253 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we analyze multi-dimensional quasi-asymptotically $c$-almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl $c$-almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically $c$-almost periodic functions and reconsider the notion of semi-$c$-periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain applications of our results to the abstract Volterra integro-differential equations in Banach spaces. (English) |
Keyword:
|
quasi-asymptotically $c$-almost periodic type functions |
Keyword:
|
$(S,{\mathbb{D}})$-asymptotically $(\omega ,c)$-periodic type functions |
Keyword:
|
$S$-asymptotically $(\omega _{j},c_{j},{\mathbb{D}}_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions |
Keyword:
|
semi-$(c_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions |
Keyword:
|
Weyl $c$-almost periodic type functions |
Keyword:
|
abstract Volterra integro-differential equations |
MSC:
|
42A75 |
MSC:
|
43A60 |
MSC:
|
47D99 |
idZBL:
|
Zbl 07442413 |
idMR:
|
MR4346112 |
DOI:
|
10.5817/AM2021-4-221 |
. |
Date available:
|
2021-10-06T08:56:19Z |
Last updated:
|
2022-02-23 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149131 |
. |
Reference:
|
[1] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells.Bound. Value Probl. 106 (2019), 1–20. MR 3974664 |
Reference:
|
[2] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells.Math. Methods Appl. Sci. 43 (2020), 305–319. MR 4044240, 10.1002/mma.5880 |
Reference:
|
[3] Alvarez, E., Gómez, A., Pinto, M.: $(\omega ,c)$-periodic functions and mild solution to abstract fractional integro-differential equations.Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8. MR 3789407, 10.14232/ejqtde.2018.1.16 |
Reference:
|
[4] Andres, J., Pennequin, D.: Semi-periodic solutions of difference and differential equations.Bound. Value Probl. 141 (2012), 1–16, doi.org/10.1186/1687-2770-2012-141. MR 3016042, 10.1186/1687-2770-2012-141 |
Reference:
|
[5] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems.Birkhäuser/Springer Basel AG, Basel, 2001. MR 2798103 |
Reference:
|
[6] Besicovitch, A.S.: Almost Periodic Functions.Dover Publ., New York, 1954. |
Reference:
|
[7] Blot, J., Cieutat, P., N’Guérékata, G.M.: $S$-asymptotically $\omega $-periodic functions and applications to evolution equations.Afr. Diaspora J. Math. 12 (2011), 113–121. MR 2847308 |
Reference:
|
[8] Chang, Y.-K., Wei, Y.: $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces.Acta Mathematica Sci. 41B (2021), 413–425. MR 4206851 |
Reference:
|
[9] Chaouchi, B., Kostić, M., Pilipović, S., Velinov, D.: Semi-Bloch periodic functions, semi-anti-periodic functions and applications.Chelj. Phy. Math. J. 5 (2020), 243–255. MR 4137431 |
Reference:
|
[10] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost automorphic type functions and applications.preprint. 2021. arXiv:2103.10467. |
Reference:
|
[11] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost periodic type functions and applications.preprint. 2020. arXiv:2012.00543. |
Reference:
|
[12] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Stepanov multi-dimensional almost periodic functions and applications.preprint. 2020. hal-03035195. |
Reference:
|
[13] Cheban, D.N.: Asymptotically Almost Periodic Solutions of Differential Equations.Hindawi Publishing Corporation, 2009. MR 2603600 |
Reference:
|
[14] Cuevas, C., de Souza, J.C.: Existence of S-asymptotically $\omega $-periodic solutions for fractional order functional integro-differential equations with infinite delay.Nonlinear Anal. 72 (2010), 1683–1689. MR 2577568, 10.1016/j.na.2009.09.007 |
Reference:
|
[15] Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces.Springer-Verlag, New York, 2013. MR 3098423 |
Reference:
|
[16] Diagana, T., Kostić, M.: Generalized almost periodic and generalized asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$.Filomat 34 (2020), 1629–1644. MR 4207701, 10.2298/FIL2005629D |
Reference:
|
[17] Diagana, T., Kostić, M.: Recent Studies in Differential Equations.ch. Chapter 1. Generalized almost automorphic and generalized asymptotically almost automorphic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$, pp. 1–28, Nova Science Publishers, New York, 2020. MR 3098423 |
Reference:
|
[18] Diening, L., Harjulehto, P., Hästüso, P., Růužicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Math., Springer, Heidelberg, 2011. MR 2790542, 10.1007/978-3-642-18363-8_3 |
Reference:
|
[19] Dimbour, W., Manou-Abi, S.M.: Asymptotically $\omega $-periodic functions in the Stepanov sense and its application for an advanced differential equation with piecewise constant argument in a Banach space.Mediterranean J. Math. 15:25 (2018), 18 pp., https://doi.org/10.1007/s00009-018-1071-61660-5446/18/010001-18. MR 3750300, 10.1007/s00009-018-1071-61660-5446/18/010001-18 |
Reference:
|
[20] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}(O)$ and $W^{m,p(x)}(O)$.J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056 |
Reference:
|
[21] Fečkan, M., Liu, K., Wang, J.-R.: $(w,\mathbb{T})$-Periodic solutions of impulsive evolution equations.Evol. Equ. Control Theory, doi:10.3934/eect.2021006. 10.3934/eect.2021006 |
Reference:
|
[22] Fedorov, V., Kostić, M.: Multi-dimensional Weyl almost periodic type functions and applications.preprint. arXiv:2101.11754. |
Reference:
|
[23] Fink, A.M.: Almost Periodic Differential Equations.Springer-Verlag, Berlin, 1974. Zbl 0325.34039 |
Reference:
|
[24] Henríquez, H.R.: Asymptotically periodic solutions of abstract differential equations.Nonlinear Anal. 80 (2013), 135–149. MR 3010761, 10.1016/j.na.2012.10.010 |
Reference:
|
[25] Henríquez, H.R., Pierri, M., Táboas, P.: On S-asymptotically $\omega $-periodic functions on Banach spaces and applications.-asymptotically $\omega $-periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130. MR 2417129, 10.1016/j.jmaa.2008.02.023 |
Reference:
|
[26] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: Generalized $c$-almost periodic functions and applications.Bull. Int. Math. Virtual Inst. 11 (2021), 283–293. MR 4187070 |
Reference:
|
[27] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: On semi-$c$-periodic functions.J. Math. (2021), 5 pp., Article ID 6620625, https://doi.org/10.1155/2021/6620625. MR 4210792, 10.1155/2021/6620625 |
Reference:
|
[28] Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D.: $c$-Almost periodic type functions and applications.Nonauton. Dyn. Syst. 7 (2020), 176–193. MR 4185794, 10.1515/msds-2020-0111 |
Reference:
|
[29] Kostić, M.: Multi-dimensional $c$-almost periodic type functions and applications.preprint. aXiv:2012.15735. |
Reference:
|
[30] Kostić, M.: Quasi-asymptotically almost periodic functions and applications.Bull. Braz. Math. Soc. (N.S.) 52, 183–212. 10.1007/s00574-020-00197-7 |
Reference:
|
[31] Kostić, M.: Selected Topics in Almost Periodicity.Book Manuscript, 2021. |
Reference:
|
[32] Kostić, M.: Weyl almost automorphic functions and applications.preprint 2021. hal-03168920. |
Reference:
|
[33] Kostić, M.: Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations.W. de Gruyter, Berlin, 2019. MR 3931753 |
Reference:
|
[34] Kostić, M.: Asymptotically Weyl almost periodic functions in Lebesgue spaces with variable exponents.J. Math. Anal. Appl. 498 (2021), 32 pp. MR 4202196, 10.1016/j.jmaa.2021.124961 |
Reference:
|
[35] Kostić, M.: Multi-dimensional $(\omega , c)$-almost periodic type functions and applications.Nonauton. Dyn. Syst. 8 (2021), 136–151. MR 4252727, 10.1515/msds-2020-0130 |
Reference:
|
[36] Kostić, M., Du, W.-S.: Generalized almost periodicity in Lebesgue spaces with variable exponents.Fixed Point Theory and Dynamical Systems with Applications, 2020, Special issue of Mathematics, Mathematics 8 928; doi:10.3390/math8060928. MR 4202196, 10.3390/math8060928 |
Reference:
|
[37] Kostić, M., Du, W.-S.: Generalized almost periodicity in Lebesgue spaces with variable exponents, Part II.Fixed Point Theory and Dynamical Systems with Applications, Special issue of Mathematics, 2020, Mathematics 8(7), 1052; https://doi.org/10.3390/math8071052. MR 4202196, 10.3390/math8071052 |
Reference:
|
[38] Kostić, M., Kumar, V., Pinto, M.: Stepanov multi-dimensional almost automorphic type functions and applications.preprint 2021. hal-03227094. |
Reference:
|
[39] Kovanko, A.S.: Sur la compacié des sysémes de fonctions presque-périodiques généralisées de H. Weyl.C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276. |
Reference:
|
[40] Levitan, M.: Almost Periodic Functions.G.I.T.T.L., Moscow, 1953, (in Russian). |
Reference:
|
[41] N’Guérékata, G.M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces.Kluwer Acad. Publ., Dordrecht, 2001. MR 1880351 |
Reference:
|
[42] Nguyen, P.Q.H.: On variable Lebesgue space.Ph.D. thesis, Kansas State University. Pro- Quest LLC, Ann Arbor, MI, 2011, 63 pp,. MR 2941891 |
Reference:
|
[43] Oueama-Guengai, E.R., N’Guérékata, G.M.: On $S$-asymptotically $\omega $-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces.Math. Methods Appl. Sci. 41 (2018), 9116–9122. MR 3897769, 10.1002/mma.5062 |
Reference:
|
[44] Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations.Kluwer Acad. Publ., Dordrecht, 1990. |
Reference:
|
[45] Xie, R., Zhang, C.: Space of $\omega $-periodic limit functions and its applications to an abstract Cauchy problem.J. Function Spaces 2015 (2015), 10 pp., Article ID 953540, http://dx.doi.org/10.1155/2015/953540. MR 3326682, 10.1155/2015/953540 |
Reference:
|
[46] Zaidman, S.: Almost-Periodic Functions in Abstract Spaces.Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985. |
. |