Previous |  Up |  Next

Article

Title: Generalized $c$-almost periodic type functions in ${\mathbb{R}}^{n}$ (English)
Author: Kostić, M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 4
Year: 2021
Pages: 221-253
Summary lang: English
.
Category: math
.
Summary: In this paper, we analyze multi-dimensional quasi-asymptotically $c$-almost periodic functions and their Stepanov generalizations as well as multi-dimensional Weyl $c$-almost periodic type functions. We also analyze several important subclasses of the class of multi-dimensional quasi-asymptotically $c$-almost periodic functions and reconsider the notion of semi-$c$-periodicity in the multi-dimensional setting, working in the general framework of Lebesgue spaces with variable exponent. We provide certain applications of our results to the abstract Volterra integro-differential equations in Banach spaces. (English)
Keyword: quasi-asymptotically $c$-almost periodic type functions
Keyword: $(S,{\mathbb{D}})$-asymptotically $(\omega ,c)$-periodic type functions
Keyword: $S$-asymptotically $(\omega _{j},c_{j},{\mathbb{D}}_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions
Keyword: semi-$(c_{j})_{j\in {\mathbb{N}}_{n}}$-periodic type functions
Keyword: Weyl $c$-almost periodic type functions
Keyword: abstract Volterra integro-differential equations
MSC: 42A75
MSC: 43A60
MSC: 47D99
idZBL: Zbl 07442413
idMR: MR4346112
DOI: 10.5817/AM2021-4-221
.
Date available: 2021-10-06T08:56:19Z
Last updated: 2022-02-23
Stable URL: http://hdl.handle.net/10338.dmlcz/149131
.
Reference: [1] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-Pseudo periodic functions, first order Cauchy problem and Lasota-Wazewska model with ergodic and unbounded oscillating production of red cells.Bound. Value Probl. 106 (2019), 1–20. MR 3974664
Reference: [2] Alvarez, E., Castillo, S., Pinto, M.: $(\omega ,c)$-asymptotically periodic functions, first-order Cauchy problem, and Lasota-Wazewska model with unbounded oscillating production of red cells.Math. Methods Appl. Sci. 43 (2020), 305–319. MR 4044240, 10.1002/mma.5880
Reference: [3] Alvarez, E., Gómez, A., Pinto, M.: $(\omega ,c)$-periodic functions and mild solution to abstract fractional integro-differential equations.Electron. J. Qual. Theory Differ. Equ. 16 (2018), 1–8. MR 3789407, 10.14232/ejqtde.2018.1.16
Reference: [4] Andres, J., Pennequin, D.: Semi-periodic solutions of difference and differential equations.Bound. Value Probl. 141 (2012), 1–16, doi.org/10.1186/1687-2770-2012-141. MR 3016042, 10.1186/1687-2770-2012-141
Reference: [5] Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems.Birkhäuser/Springer Basel AG, Basel, 2001. MR 2798103
Reference: [6] Besicovitch, A.S.: Almost Periodic Functions.Dover Publ., New York, 1954.
Reference: [7] Blot, J., Cieutat, P., N’Guérékata, G.M.: $S$-asymptotically $\omega $-periodic functions and applications to evolution equations.Afr. Diaspora J. Math. 12 (2011), 113–121. MR 2847308
Reference: [8] Chang, Y.-K., Wei, Y.: $S$-asymptotically Bloch type periodic solutions to some semi-linear evolution equations in Banach spaces.Acta Mathematica Sci. 41B (2021), 413–425. MR 4206851
Reference: [9] Chaouchi, B., Kostić, M., Pilipović, S., Velinov, D.: Semi-Bloch periodic functions, semi-anti-periodic functions and applications.Chelj. Phy. Math. J. 5 (2020), 243–255. MR 4137431
Reference: [10] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost automorphic type functions and applications.preprint. 2021. arXiv:2103.10467.
Reference: [11] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Multi-dimensional almost periodic type functions and applications.preprint. 2020. arXiv:2012.00543.
Reference: [12] Chávez, A., Khalil, K., Kostić, M., Pinto, M.: Stepanov multi-dimensional almost periodic functions and applications.preprint. 2020. hal-03035195.
Reference: [13] Cheban, D.N.: Asymptotically Almost Periodic Solutions of Differential Equations.Hindawi Publishing Corporation, 2009. MR 2603600
Reference: [14] Cuevas, C., de Souza, J.C.: Existence of S-asymptotically $\omega $-periodic solutions for fractional order functional integro-differential equations with infinite delay.Nonlinear Anal. 72 (2010), 1683–1689. MR 2577568, 10.1016/j.na.2009.09.007
Reference: [15] Diagana, T.: Almost Automorphic Type and Almost Periodic Type Functions in Abstract Spaces.Springer-Verlag, New York, 2013. MR 3098423
Reference: [16] Diagana, T., Kostić, M.: Generalized almost periodic and generalized asymptotically almost periodic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$.Filomat 34 (2020), 1629–1644. MR 4207701, 10.2298/FIL2005629D
Reference: [17] Diagana, T., Kostić, M.: Recent Studies in Differential Equations.ch. Chapter 1. Generalized almost automorphic and generalized asymptotically almost automorphic type functions in Lebesgue spaces with variable exponents $L^{p(x)}$, pp. 1–28, Nova Science Publishers, New York, 2020. MR 3098423
Reference: [18] Diening, L., Harjulehto, P., Hästüso, P., Růužicka, M.: Lebesgue and Sobolev Spaces with Variable Exponents.Lecture Notes in Math., Springer, Heidelberg, 2011. MR 2790542, 10.1007/978-3-642-18363-8_3
Reference: [19] Dimbour, W., Manou-Abi, S.M.: Asymptotically $\omega $-periodic functions in the Stepanov sense and its application for an advanced differential equation with piecewise constant argument in a Banach space.Mediterranean J. Math. 15:25 (2018), 18 pp., https://doi.org/10.1007/s00009-018-1071-61660-5446/18/010001-18. MR 3750300, 10.1007/s00009-018-1071-61660-5446/18/010001-18
Reference: [20] Fan, X.L., Zhao, D.: On the spaces $L^{p(x)}(O)$ and $W^{m,p(x)}(O)$.J. Math. Anal. Appl. 263 (2001), 424–446. MR 1866056
Reference: [21] Fečkan, M., Liu, K., Wang, J.-R.: $(w,\mathbb{T})$-Periodic solutions of impulsive evolution equations.Evol. Equ. Control Theory, doi:10.3934/eect.2021006. 10.3934/eect.2021006
Reference: [22] Fedorov, V., Kostić, M.: Multi-dimensional Weyl almost periodic type functions and applications.preprint. arXiv:2101.11754.
Reference: [23] Fink, A.M.: Almost Periodic Differential Equations.Springer-Verlag, Berlin, 1974. Zbl 0325.34039
Reference: [24] Henríquez, H.R.: Asymptotically periodic solutions of abstract differential equations.Nonlinear Anal. 80 (2013), 135–149. MR 3010761, 10.1016/j.na.2012.10.010
Reference: [25] Henríquez, H.R., Pierri, M., Táboas, P.: On S-asymptotically $\omega $-periodic functions on Banach spaces and applications.-asymptotically $\omega $-periodic functions on Banach spaces and applications, J. Math. Appl. Anal. 343 (2008), 1119–1130. MR 2417129, 10.1016/j.jmaa.2008.02.023
Reference: [26] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: Generalized $c$-almost periodic functions and applications.Bull. Int. Math. Virtual Inst. 11 (2021), 283–293. MR 4187070
Reference: [27] Khalladi, M.T., Kostić, M., Pinto, M., Rahmani, A., Velinov, D.: On semi-$c$-periodic functions.J. Math. (2021), 5 pp., Article ID 6620625, https://doi.org/10.1155/2021/6620625. MR 4210792, 10.1155/2021/6620625
Reference: [28] Khalladi, M.T., Kostić, M., Rahmani, A., Pinto, M., Velinov, D.: $c$-Almost periodic type functions and applications.Nonauton. Dyn. Syst. 7 (2020), 176–193. MR 4185794, 10.1515/msds-2020-0111
Reference: [29] Kostić, M.: Multi-dimensional $c$-almost periodic type functions and applications.preprint. aXiv:2012.15735.
Reference: [30] Kostić, M.: Quasi-asymptotically almost periodic functions and applications.Bull. Braz. Math. Soc. (N.S.) 52, 183–212. 10.1007/s00574-020-00197-7
Reference: [31] Kostić, M.: Selected Topics in Almost Periodicity.Book Manuscript, 2021.
Reference: [32] Kostić, M.: Weyl almost automorphic functions and applications.preprint 2021. hal-03168920.
Reference: [33] Kostić, M.: Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations.W. de Gruyter, Berlin, 2019. MR 3931753
Reference: [34] Kostić, M.: Asymptotically Weyl almost periodic functions in Lebesgue spaces with variable exponents.J. Math. Anal. Appl. 498 (2021), 32 pp. MR 4202196, 10.1016/j.jmaa.2021.124961
Reference: [35] Kostić, M.: Multi-dimensional $(\omega , c)$-almost periodic type functions and applications.Nonauton. Dyn. Syst. 8 (2021), 136–151. MR 4252727, 10.1515/msds-2020-0130
Reference: [36] Kostić, M., Du, W.-S.: Generalized almost periodicity in Lebesgue spaces with variable exponents.Fixed Point Theory and Dynamical Systems with Applications, 2020, Special issue of Mathematics, Mathematics 8 928; doi:10.3390/math8060928. MR 4202196, 10.3390/math8060928
Reference: [37] Kostić, M., Du, W.-S.: Generalized almost periodicity in Lebesgue spaces with variable exponents, Part II.Fixed Point Theory and Dynamical Systems with Applications, Special issue of Mathematics, 2020, Mathematics 8(7), 1052; https://doi.org/10.3390/math8071052. MR 4202196, 10.3390/math8071052
Reference: [38] Kostić, M., Kumar, V., Pinto, M.: Stepanov multi-dimensional almost automorphic type functions and applications.preprint 2021. hal-03227094.
Reference: [39] Kovanko, A.S.: Sur la compacié des sysémes de fonctions presque-périodiques généralisées de H. Weyl.C.R. (Doklady) Ac. Sc. URSS 43 (1944), 275–276.
Reference: [40] Levitan, M.: Almost Periodic Functions.G.I.T.T.L., Moscow, 1953, (in Russian).
Reference: [41] N’Guérékata, G.M.: Almost Automorphic and Almost Periodic Functions in Abstract Spaces.Kluwer Acad. Publ., Dordrecht, 2001. MR 1880351
Reference: [42] Nguyen, P.Q.H.: On variable Lebesgue space.Ph.D. thesis, Kansas State University. Pro- Quest LLC, Ann Arbor, MI, 2011, 63 pp,. MR 2941891
Reference: [43] Oueama-Guengai, E.R., N’Guérékata, G.M.: On $S$-asymptotically $\omega $-periodic and Bloch periodic mild solutions to some fractional differential equations in abstract spaces.Math. Methods Appl. Sci. 41 (2018), 9116–9122. MR 3897769, 10.1002/mma.5062
Reference: [44] Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations.Kluwer Acad. Publ., Dordrecht, 1990.
Reference: [45] Xie, R., Zhang, C.: Space of $\omega $-periodic limit functions and its applications to an abstract Cauchy problem.J. Function Spaces 2015 (2015), 10 pp., Article ID 953540, http://dx.doi.org/10.1155/2015/953540. MR 3326682, 10.1155/2015/953540
Reference: [46] Zaidman, S.: Almost-Periodic Functions in Abstract Spaces.Pitman Research Notes in Math., vol. 126, Pitman, Boston, 1985.
.

Files

Files Size Format View
ArchMathRetro_057-2021-4_2.pdf 848.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo