Title:
|
Four-dimensional Einstein metrics from biconformal deformations (English) |
Author:
|
Baird, Paul |
Author:
|
Ventura, Jade |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
57 |
Issue:
|
5 |
Year:
|
2021 |
Pages:
|
255-283 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. Examples of one particular family have ends which collapse asymptotically to $\mathbb{R}^2$. (English) |
Keyword:
|
Einstein manifold |
Keyword:
|
conformal foliation |
Keyword:
|
semi-conformal map |
Keyword:
|
biconformal deformation |
MSC:
|
53C12 |
MSC:
|
53C18 |
MSC:
|
53C25 |
idZBL:
|
Zbl 07442414 |
idMR:
|
MR4346113 |
DOI:
|
10.5817/AM2021-5-255 |
. |
Date available:
|
2021-10-06T08:57:36Z |
Last updated:
|
2022-02-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149132 |
. |
Reference:
|
[1] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds.London Math. Soc. Monographs, New Series, vol. 29, Oxford Univ. Press, 2003. MR 2044031 |
Reference:
|
[2] Besse, A.: Einstein Manifolds.Springer-Verlag, 1987. Zbl 0613.53001 |
Reference:
|
[3] Danielo, L.: Structures Conformes, Harmonicité et Métriques d’Einstein.Ph.D. thesis, Université de Bretagne Occidentale, 2004. |
Reference:
|
[4] Danielo, L.: Construction de métriques d’Einstein à partir de transformations biconformes.Ann. Fac. Sci. Toulouse (6) 15 (3) (2006), 553–588. MR 2246414, 10.5802/afst.1129 |
Reference:
|
[5] Dieudonné, J.: Foundations of Modern Analysis.Academic Press, 1969. |
Reference:
|
[6] Hebey, E.: Scalar curvature type problems in Riemannian geometry.Notes of a course given at the University of Rome 3. http://www.u-cergy.fr/rech/pages/hebey/. |
Reference:
|
[7] Hebey, E.: Introduction à l’analyse non linéaire sur les variétés.Diderot, Paris, 1997. |
Reference:
|
[8] Hilbert, D.: Die Grundlagen der Physik.Nachr. Ges. Wiss. Göttingen (1915), 395–407. |
Reference:
|
[9] Hitchin, N.J.: On compact four-dimensional Einstein manifolds.J. Differential Geom. 9 (1974), 435–442. 10.4310/jdg/1214432419 |
Reference:
|
[10] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differential Geom. 20 (1984), 479–495. Zbl 0576.53028, 10.4310/jdg/1214439291 |
Reference:
|
[11] Spivak, M.: A Comprehensive Introduction to Riemannian Geometry.2nd ed., Publish or Perish, Wilmongton DE, 1979. |
Reference:
|
[12] Thorpe, J.A.: Some remarks on the Gauss-Bonnet formula.J. Math. Mech. 18 (1969), 779–786. |
Reference:
|
[13] Vaisman, I.: Conformal foliations.Kodai Math. J. 2 (1979), 26–37. 10.2996/kmj/1138035963 |
Reference:
|
[14] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds.Osaka Math. J. 12 (1960), 21–37. Zbl 0096.37201 |
. |