Previous |  Up |  Next

Article

Title: Four-dimensional Einstein metrics from biconformal deformations (English)
Author: Baird, Paul
Author: Ventura, Jade
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 5
Year: 2021
Pages: 255-283
Summary lang: English
.
Category: math
.
Summary: Biconformal deformations take place in the presence of a conformal foliation, deforming by different factors tangent to and orthogonal to the foliation. Four-manifolds endowed with a conformal foliation by surfaces present a natural context to put into effect this process. We develop the tools to calculate the transformation of the Ricci curvature under such deformations and apply our method to construct Einstein $4$-manifolds. Examples of one particular family have ends which collapse asymptotically to $\mathbb{R}^2$. (English)
Keyword: Einstein manifold
Keyword: conformal foliation
Keyword: semi-conformal map
Keyword: biconformal deformation
MSC: 53C12
MSC: 53C18
MSC: 53C25
idZBL: Zbl 07442414
idMR: MR4346113
DOI: 10.5817/AM2021-5-255
.
Date available: 2021-10-06T08:57:36Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149132
.
Reference: [1] Baird, P., Wood, J.C.: Harmonic morphisms between Riemannian manifolds.London Math. Soc. Monographs, New Series, vol. 29, Oxford Univ. Press, 2003. MR 2044031
Reference: [2] Besse, A.: Einstein Manifolds.Springer-Verlag, 1987. Zbl 0613.53001
Reference: [3] Danielo, L.: Structures Conformes, Harmonicité et Métriques d’Einstein.Ph.D. thesis, Université de Bretagne Occidentale, 2004.
Reference: [4] Danielo, L.: Construction de métriques d’Einstein à partir de transformations biconformes.Ann. Fac. Sci. Toulouse (6) 15 (3) (2006), 553–588. MR 2246414, 10.5802/afst.1129
Reference: [5] Dieudonné, J.: Foundations of Modern Analysis.Academic Press, 1969.
Reference: [6] Hebey, E.: Scalar curvature type problems in Riemannian geometry.Notes of a course given at the University of Rome 3. http://www.u-cergy.fr/rech/pages/hebey/.
Reference: [7] Hebey, E.: Introduction à l’analyse non linéaire sur les variétés.Diderot, Paris, 1997.
Reference: [8] Hilbert, D.: Die Grundlagen der Physik.Nachr. Ges. Wiss. Göttingen (1915), 395–407.
Reference: [9] Hitchin, N.J.: On compact four-dimensional Einstein manifolds.J. Differential Geom. 9 (1974), 435–442. 10.4310/jdg/1214432419
Reference: [10] Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature.J. Differential Geom. 20 (1984), 479–495. Zbl 0576.53028, 10.4310/jdg/1214439291
Reference: [11] Spivak, M.: A Comprehensive Introduction to Riemannian Geometry.2nd ed., Publish or Perish, Wilmongton DE, 1979.
Reference: [12] Thorpe, J.A.: Some remarks on the Gauss-Bonnet formula.J. Math. Mech. 18 (1969), 779–786.
Reference: [13] Vaisman, I.: Conformal foliations.Kodai Math. J. 2 (1979), 26–37. 10.2996/kmj/1138035963
Reference: [14] Yamabe, H.: On a deformation of Riemannian structures on compact manifolds.Osaka Math. J. 12 (1960), 21–37. Zbl 0096.37201
.

Files

Files Size Format View
ArchMathRetro_057-2021-5_1.pdf 774.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo