Previous |  Up |  Next

Article

Title: An upper bound of a generalized upper Hamiltonian number of a graph (English)
Author: Dzúrik, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 57
Issue: 5
Year: 2021
Pages: 299-311
Summary lang: English
.
Category: math
.
Summary: In this article we study graphs with ordering of vertices, we define a generalization called a pseudoordering, and for a graph $H$ we define the $H$-Hamiltonian number of a graph $G$. We will show that this concept is a generalization of both the Hamiltonian number and the traceable number. We will prove equivalent characteristics of an isomorphism of graphs $G$ and $H$ using $H$-Hamiltonian number of $G$. Furthermore, we will show that for a fixed number of vertices, each path has a maximal upper $H$-Hamiltonian number, which is a generalization of the same claim for upper Hamiltonian numbers and upper traceable numbers. Finally we will show that for every connected graph $H$ only paths have maximal $H$-Hamiltonian number. (English)
Keyword: graph
Keyword: vertices
Keyword: ordering
Keyword: pseudoordering
Keyword: upper Hamiltonian number
Keyword: upper traceable number
Keyword: upper H-Hamiltonian number
Keyword: Hamiltonian spectra
MSC: 05C12
MSC: 05C45
idZBL: Zbl 07442416
idMR: MR4346115
DOI: 10.5817/AM2021-5-299
.
Date available: 2021-10-06T08:59:51Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149135
.
Reference: [1] Dzúrik, M.: Metrické vlastnosti grafů.bachelor thesis (2018).
Reference: [2] Okamoto, F., Zhang, P.: On upper traceable numbers of graphs.Math. Bohem. 133 (2008), 389–405. MR 2472487, 10.21136/MB.2008.140628
.

Files

Files Size Format View
ArchMathRetro_057-2021-5_3.pdf 544.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo