Previous |  Up |  Next

Article

Title: Weakly compact sets in Orlicz sequence spaces (English)
Author: Shi, Siyu
Author: Shi, Zhongrui
Author: Wu, Shujun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 961-974
Summary lang: English
.
Category: math
.
Summary: We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of $N$-functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of $\lim _{u\rightarrow 0} M(u)/u=0$, we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set $A$ in Riesz spaces $l_p$ $(1 < p < \infty )$ is relatively sequential weakly compact if and only if it is normed bounded, that says $\sup _{u\in A}\sum _{i=1}^{\infty } |u(i)|^p < \nobreak \infty $. The result again confirms the conclusion of the Banach-Alaoglu \hbox {theorem}. (English)
Keyword: compact set
Keyword: weak topology
Keyword: Banach space
Keyword: dual space
Keyword: Orlicz sequence spaces
MSC: 46B20
MSC: 46E30
idZBL: Zbl 07442466
idMR: MR4339103
DOI: 10.21136/CMJ.2021.0153-20
.
Date available: 2021-11-08T15:57:05Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149230
.
Reference: [1] Aleksandrov, P. S., Kolmogorov, A. N.: Introduction to the Theory of Sets and the Theory of Functions. 1. Introduction to the General Theory of Sets and Functions.Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (1948), Russian. Zbl 0037.03404, MR 0040369
Reference: [2] Andô, T.: Weakly compact sets in Orlicz spaces.Can. J. Math. 14 (1962), 170-176. Zbl 0103.32902, MR 0157228, 10.4153/CJM-1962-012-7
Reference: [3] Arzelà, C.: Funzioni di linee.Rom. Acc. L. Rend. (4) 5 (1889), 342-348 Italian \99999JFM99999 21.0424.01.
Reference: [4] Batt, J., Schlüchtermann, G.: Eberlein compacts in $L_1(X)$.Stud. Math. 83 (1986), 239-250. Zbl 0555.46014, MR 0850826, 10.4064/sm-83-3-239-250
Reference: [5] Brouwer, L. E. J.: Beweis der Invarianz des $n$-dimensionalen Gebiets.Math. Ann. 71 (1911), 305-313 German \99999JFM99999 42.0418.01. MR 1511658, 10.1007/BF01456846
Reference: [6] Cheng, L., Cheng, Q., Shen, Q., Tu, K., Zhang, W.: A new approach to measures of noncompactness of Banach spaces.Stud. Math. 240 (2018), 21-45. Zbl 06828572, MR 3719465, 10.4064/sm8448-2-2017
Reference: [7] Cheng, L., Cheng, Q., Zhang, J.: On super fixed point property and super weak compactness of convex subsets in Banach spaces.J. Math. Anal. Appl. 428 (2015), 1209-1224. Zbl 1329.46015, MR 3334975, 10.1016/j.jmaa.2015.03.061
Reference: [8] Darbo, G.: Punti uniti in trasformazioni a codominio non compatto.Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92 Italian. Zbl 0064.35704, MR 0070164
Reference: [9] Dodds, P. G., Sukochev, F. A., Schlüchtermann, G.: Weak compactness criteria in symmetric spaces of measurable operators.Math. Proc. Camb. Philos. Soc. 131 (2001), 363-384. Zbl 1004.46038, MR 1857125, 10.1017/S0305004101005114
Reference: [10] Fabian, M., Montesinos, V., Zizler, V.: On weak compactness in $L_1$ spaces.Rocky Mt. J. Math. 39 (2009), 1885-1893. Zbl 1190.46011, MR 2575884, 10.1216/RMJ-2009-39-6-1885
Reference: [11] Foralewski, P., Hudzik, H., Kolwicz, P.: Non-squareness properties of Orlicz-Lorentz sequence spaces.J. Funct. Anal. 264 (2013), 605-629. Zbl 1263.46015, MR 2997393, 10.1016/j.jfa.2012.10.014
Reference: [12] Gale, D.: The game of Hex and the Brouwer fixed-point theorem.Am. Math. Mon. 86 (1979), 818-827. Zbl 0448.90097, MR 0551501, 10.2307/2320146
Reference: [13] James, R. C.: Weakly compact sets.Trans. Am. Math. Soc. 113 (1964), 129-140. Zbl 0129.07901, MR 0165344, 10.1090/S0002-9947-1964-0165344-2
Reference: [14] James, R. C.: The Eberlein-Šmulian theorem.Functional Analysis. Selected Topics Narosa Publishing House, New Delhi (1998), 47-49. Zbl 1010.46011, MR 1668790
Reference: [15] Kelley, J. L.: General Topology.The University Series in Higher Mathematics. D. van Nostrand, New York (1955). Zbl 0066.16604, MR 0070144
Reference: [16] Kolmogorov, A. N., Tikhomirov, V. M.: $\epsilon$-entropy and $\epsilon$-capacity of sets in function spaces.Usp. Mat. Nauk 14 (1959), 3-86 Russian. Zbl 0090.33503, MR 0112032
Reference: [17] Krasnosel'skij, M. A., Rutitskij, Y. B.: Convex Functions and Orlicz Spaces.P. Noordhoff, Groningen (1961). Zbl 0095.09103, MR 0126722
Reference: [18] Leray, J., Schauder, J.: Topologie et équations fonctionnelles.Ann. Sci. Éc. Norm. Supér., III. Ser. 51 (1934), 45-78 French. Zbl 0009.07301, MR 1509338, 10.24033/asens.836
Reference: [19] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034. Springer, Berlin (1983). Zbl 0557.46020, MR 0724434, 10.1007/BFb0072210
Reference: [20] Schlüchtermann, G.: Weak compactness in $L_\infty(\mu,X)$.J. Funct. Anal. 125 (1994), 379-388. Zbl 0828.46036, MR 1297673, 10.1006/jfan.1994.1129
Reference: [21] Shi, S., Shi, Z.: On generalized Young's inequality.Function Spaces XII Banach Center Publications 119. Polish Academy of Sciences, Institute of Mathematics. Warsaw (2019), 295-309. Zbl 1444.46024, 10.4064/bc119-17
Reference: [22] Shi, Z., Wang, Y.: Uniformly non-square points and representation of functionals of Orlicz-Bochner sequence spaces.Rocky Mt. J. Math. 48 (2018), 639-660. Zbl 1402.46013, MR 3810210, 10.1216/RMJ-2018-48-2-639
Reference: [23] Šmulian, V.: On compact sets in the space of measurable functions.Mat. Sb., N. Ser. 15 (1944), 343-346 Russian. Zbl 0060.27602, MR 0012210
Reference: [24] Wu, Y.: Normed compact sets and weakly $H$-compact in Orlicz space.J. Nature 3 (1982), 234 Chinese.
Reference: [25] Wu, C., Wang, T.: Orlicz Spaces and Applications.Heilongjiang Sci. & Tech. Press, Harbin (1983), Chinese.
Reference: [26] Zhang, X., Shi, Z.: A criterion of compact set in Orlicz sequence space $l_{(M)}$.J. Changchun Post Telcommunication Institute 15 (1997), 64-67 Chinese.
.

Files

Files Size Format View
CzechMathJ_71-2021-4_3.pdf 259.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo