Previous |  Up |  Next

Article

Title: On the powers of quasihomogeneous Toeplitz operators (English)
Author: Bouhali, Aissa
Author: Bendaoud, Zohra
Author: Louhichi, Issam
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 71
Issue: 4
Year: 2021
Pages: 1049-1061
Summary lang: English
.
Category: math
.
Summary: We present sufficient conditions for the existence of $p$th powers of a quasihomogeneous Toeplitz operator $T_{{\rm e}^{{\rm i} s\theta }\psi }$, where $\psi $ is a radial polynomial function and $p$, $s$ are natural numbers. A large class of examples is provided to illustrate our results. To our best knowledge those examples are not covered by the current literature. The main tools in the proof of our results are the Mellin transform and some classical theorems of complex analysis. (English)
Keyword: quasihomogeneous Toeplitz operator
Keyword: Mellin transform
MSC: 30-00
MSC: 30H20
MSC: 44A99
MSC: 47B35
idZBL: Zbl 07442473
idMR: MR4339110
DOI: 10.21136/CMJ.2021.0193-20
.
Date available: 2021-11-08T16:00:23Z
Last updated: 2024-01-01
Stable URL: http://hdl.handle.net/10338.dmlcz/149237
.
Reference: [1] Ahern, P., Čučković, Ž.: A theorem of Brown-Halmos type for Bergman space Toeplitz operators.J. Funct. Anal. 187 (2001), 200-210. Zbl 0996.47037, MR 1867348, 10.1006/jfan.2001.3811
Reference: [2] Cohen, A. M.: Numerical Methods for Laplace Transform Inversion.Numerical Methods and Algorithms 5. Springer, New York (2007). Zbl 1127.65094, MR 2325479, 10.1007/978-0-387-68855-8
Reference: [3] Čučković, Ž., Rao, N. V.: Mellin transform, monomial symbols, and commuting Toeplitz operators.J. Funct. Anal. 154 (1998), 195-214. Zbl 0936.47015, MR 1616532, 10.1006/jfan.1997.3204
Reference: [4] Godement, R.: Analysis III. Analytic and Differential Functions, Manifolds and Riemann Surfaces.Universitext. Springer, Cham (2015). Zbl 1318.30001, MR 3328588, 10.1007/978-3-319-16053-5
Reference: [5] Louhichi, I.: Powers and roots of Toeplitz operators.Proc. Am. Math. Soc. 135 (2007), 1465-1475. Zbl 1112.47023, MR 2276656, 10.1090/S0002-9939-06-08626-6
Reference: [6] Louhichi, I., Rao, N. V.: Roots of Toeplitz operators on the Bergman space.Pac. J. Math. 252 (2011), 127-144. Zbl 1237.47033, MR 2862145, 10.2140/pjm.2011.252.127
Reference: [7] Louhichi, I., Rao, N. V., Yousef, A.: Two questions on products of Toeplitz operators on the Bergman space.Complex Anal. Oper. Theory 3 (2009), 881-889. Zbl 1195.47018, MR 2570117, 10.1007/s11785-008-0097-3
Reference: [8] Louhichi, I., Strouse, E., Zakariasy, L.: Products of Toeplitz operators on the Bergman space.Integral Equations Oper. Theory 54 (2006), 525-539. Zbl 1109.47023, MR 2222982, 10.1007/s00020-005-1369-1
Reference: [9] Louhichi, I., Zakariasy, L.: On Toeplitz operators with quasihomogeneous symbols.Arch. Math. 85 (2005), 248-257. Zbl 1088.47019, MR 2172383, 10.1007/s00013-005-1198-0
Reference: [10] Remmert, R.: Classical Topics in Complex Function Theory.Graduate Texts in Mathematics 172. Springer, New York (1998). Zbl 0895.30001, MR 1483074, 10.1007/978-1-4757-2956-6
.

Files

Files Size Format View
CzechMathJ_71-2021-4_10.pdf 257.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo