Title:
|
A variety of Euler's sum of powers conjecture (English) |
Author:
|
Cai, Tianxin |
Author:
|
Zhang, Yong |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
71 |
Issue:
|
4 |
Year:
|
2021 |
Pages:
|
1099-1113 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a variety of Euler's sum of powers conjecture, i.e., whether the Diophantine system $$ \begin{cases} n=a_{1}+a_{2}+\cdots +a_{s-1},\\ a_{1}a_{2}\cdots a_{s-1}(a_{1}+a_{2}+\cdots +a_{s-1})=b^{s} \end{cases} $$ has positive integer or rational solutions $n$, $b$, $a_i$, $i=1,2,\cdots ,s-1$, $s\geq 3.$ Using the theory of elliptic curves, we prove that it has no positive integer solution for $s=3$, but there are infinitely many positive integers $n$ such that it has a positive integer solution for $s\geq 4$. As a corollary, for $s\geq 4$ and any positive integer $n$, the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that it has infinitely many positive rational solutions for $s\geq 4$ and a fixed positive integer $n$. (English) |
Keyword:
|
Euler's sum of powers conjecture |
Keyword:
|
elliptic curve |
Keyword:
|
positive integer solution |
Keyword:
|
positive rational solution |
MSC:
|
11D41 |
MSC:
|
11D72 |
MSC:
|
11G05 |
idZBL:
|
Zbl 07442476 |
idMR:
|
MR4339113 |
DOI:
|
10.21136/CMJ.2021.0210-20 |
. |
Date available:
|
2021-11-08T16:01:56Z |
Last updated:
|
2024-01-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149240 |
. |
Reference:
|
[1] Cai, T., Chen, D.: A new variant of the Hilbert-Waring problem.Math. Comput. 82 (2013), 2333-2341. Zbl 1284.11127, MR 3073204, 10.1090/s0025-5718-2013-02685-3 |
Reference:
|
[2] Cai, T., Chen, D., Zhang, Y.: A new generalization of Fermat's last theorem.J. Number Theory 149 (2015), 33-45. Zbl 1369.11026, MR 3295999, 10.1016/j.jnt.2014.09.014 |
Reference:
|
[3] Cohen, H.: Number Theory. Vol. I: Tools and Diophantine Equations.Graduate Texts in Mathematics 239. Springer, New York (2007). Zbl 1119.11001, MR 2312337, 10.1007/978-0-387-49923-9 |
Reference:
|
[4] Elkies, N. D.: On $A^4+B^4+C^4=D^4$.Math. Comput. 184 (1988), 825-835. Zbl 0698.10010, MR 930224, 10.1090/S0025-5718-1988-0930224-9 |
Reference:
|
[5] Guy, R. K.: Unsolved Problems in Number Theory.Problem Books in Mathematics. Springer, New York (2004). Zbl 1058.11001, MR 2076335, 10.1007/978-1-4899-3585-4 |
Reference:
|
[6] Lander, L. J., Parkin, T. R.: Counterexample to Euler's conjecture on sums of like powers.Bull. Am. Math. Soc. 72 (1966), 1079. Zbl 0145.04903, MR 0197389, 10.1090/S0002-9904-1966-11654-3 |
Reference:
|
[7] : Magma computational algebra system for algebra, number theory and geometry.Available at http://magma.maths.usyd.edu.au/magma/. |
Reference:
|
[8] Mordell, L. J.: Diophantine Equations.Pure and Applied Mathematics 30. Academic Press, London (1969). Zbl 0188.34503, MR 0249355 |
Reference:
|
[9] Rowland, E. S.: Elliptic curve and integral solutions to $A^4+B^4+C^4=D^4$. (2004), 7 pages. |
Reference:
|
[10] Skolem, T.: Diophantische Gleichungen.Ergebnisse der Mathematik und ihrer Grenzgebiete 5. Springer, Berlin (1938), German. Zbl 0018.29302 |
Reference:
|
[11] Ulas, M.: On some Diophantine systems involving symmetric polynomials.Math. Comput. 83 (2014), 1915-1930. Zbl 1290.11064, MR 3194135, 10.1090/S0025-5718-2013-02778-0 |
. |