Previous |  Up |  Next

Article

Keywords:
support $\tau $-tilting module; endomorphism algebra; derived dimension
Summary:
Comparing the bounded derived categories of an algebra and of the endomorphism algebra of a given support $\tau $-tilting module, we find a relation between the derived dimensions of an algebra and of the endomorphism algebra of a given $\tau $-tilting module.
References:
[1] Adachi, T., Iyama, O., Reiten, I.: $\tau$-tilting theory. Compos. Math. 150 (2014), 415-452. DOI 10.1112/S0010437X13007422 | MR 3187626 | Zbl 1330.16004
[2] Hügel, L. Angeleri, Marks, F., Vitória, J.: Silting modules. Int. Math. Res. Not. 2016 (2016), 1251-1284. DOI 10.1093/imrn/rnv191 | MR 3493448 | Zbl 1367.16005
[3] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1: Techniques of Representation Theory. London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). DOI 10.1017/CBO9780511614309 | MR 2197389 | Zbl 1092.16001
[4] Bekkert, V., Merklen, H. A.: Indecomposables in derived categories of gentle algebras. Algebr. Represent. Theory 6 (2003), 285-302. DOI 10.1023/a:1025142023594 | MR 2000963 | Zbl 1032.16011
[5] Burban, I., Drozd, Y.: On the derived categories of gentle and skew-gentle algebra: Homological algebra and matrix problems. Available at https://arxiv.org/abs/1706.08358 (2017), 57 pages.
[6] Chen, X.-W., Ye, Y., Zhang, P.: Algebras of derived dimension zero. Commun. Algebra 36 (2008), 1-10. DOI 10.1080/00927870701649184 | MR 2378361 | Zbl 1135.16012
[7] Han, Y.: Derived dimensions of representation-finite algebras. Available at https://arxiv.org/abs/0909.0330 (2009), 4 pages.
[8] Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62 (1987), 339-389. DOI 10.1007/BF02564452 | MR 0910167 | Zbl 0626.16008
[9] Oppermann, S.: Lower bounds for Auslander's representation dimension. Duke Math. J. 148 (2009), 211-249. DOI 10.1215/00127094-2009-025 | MR 2524495 | Zbl 1173.16007
[10] Rouquier, R.: Representation dimension of exterior algebras. Invent. Math. 165 (2006), 357-367. DOI 10.1007/s00222-006-0499-7 | MR 2231960 | Zbl 1101.18006
[11] Rouquier, R.: Dimensions of triangulated categories. J. $K$-Theory 1 (2008), 193-256. DOI 10.1017/is007011012jkt010 | MR 2434186 | Zbl 1165.18008
[12] Suarez, P.: On the global dimension of the endomorphism algebra of a $\tau$-tilting module. J. Pure Appl. Algebra 225 (2021), 106740. DOI 10.1016/j.jpaa.2021.106740 | MR 4232685
[13] Treffinger, H.: $\tau$-tilting theory and $\tau$-slices. J. Algebra 481 (2017), 362-392. DOI 10.1016/j.jalgebra.2017.03.004 | MR 3639480 | Zbl 1411.16012
[14] Zheng, J., Huang, Z.: An upper bound for the dimension of bounded derived categories. J. Algebra 556 (2020), 1211-1228. DOI 10.1016/j.jalgebra.2020.04.012 | MR 4090423 | Zbl 1440.18025
Partner of
EuDML logo