Previous |  Up |  Next

Article

Keywords:
fuzzy differential subordination; fuzzy best dominant; linear operator
Summary:
We obtain several fuzzy differential subordinations by using a linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha }f(z)=z+\sum \limits _{k=2}^{\infty }(1+\gamma ( k-1))^{n}m^{\alpha }(m+k)^{-\alpha }a_{k}z^{k}$. Using the linear operator $\mathcal {I}_{m,\gamma }^{n,\alpha },$ we also introduce a class of univalent analytic functions for which we give some properties.
References:
[1] Al-Oboudi, F. M.: On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 25-27 (2004), 1429-1436. DOI 10.1155/S0161171204108090 | MR 2085011 | Zbl 1072.30009
[2] Lupaş, A. Alb: On special fuzzy differerential subordinations using convolution product of Sălăgean operator and Ruscheweyh derivative. J. Comput. Anal. Appl. 15 (2013), 1484-1489. MR 3075680 | Zbl 1290.30013
[3] Lupaş, A. Alb, Oros, G.: On special fuzzy differerential subordinations using Sălăgean and Ruscheweyh operators. Appl. Math. Comput. 261 (2015), 119-127. DOI 10.1016/j.amc.2015.03.087 | MR 3345263 | Zbl 1410.30011
[4] Aouf, M. K.: Some inclusion relationships associated with the Komatu integral operator. Math. Comput. Modelling 50 (2009), 1360-1366. DOI 10.1016/j.mcm.2008.10.023 | MR 2583425 | Zbl 1185.30011
[5] Aouf, M. K.: The Komatu integral operator and strongly close-to-convex functions. Bull. Math. Anal. Appl. 3 (2011), 209-219. MR 2955361 | Zbl 1314.30017
[6] Bernardi, S. D.: Convex and starlike univalent functions. Trans. Am. Math. Soc. 135 (1969), 429-446. DOI 10.1090/S0002-9947-1969-0232920-2 | MR 232920 | Zbl 0172.09703
[7] Bulboacă, T.: Differential Subordinations and Superordinations: Recent Results. House of Scientic Book Publ., Cluj-Napoca (2005).
[8] Ebadian, A., Najafzadeh, S.: Uniformly starlike and convex univalent functions by using certain integral operators. Acta Univ. Apulensis, Math. Inform. 20 (2009), 17-23. MR 2656769 | Zbl 1224.30046
[9] El-Ashwah, R. M., Aouf, M. K., El-Deeb, S. M.: Differential subordination for certain subclasses of $p$-valent functions associated with generalized linear operator. J. Math. 2013 (2013), Article ID 692045, 8 pages. DOI 10.1155/2013/692045 | MR 3100736 | Zbl 1268.30011
[10] Gal, S. G., Ban, A. I.: Elemente de Matematica Fuzzy. University of Oradea, Oradea (1996), Romanian.
[11] Khairnar, S. M., More, M.: On a subclass of multivalent $\beta$-uniformly starlike and convex functions defined by a linear operator. IAENG, Int. J. Appl. Math. 39 (2009), 175-183. MR 2554929 | Zbl 1229.30008
[12] Komatu, Y.: On analytic prolongation of a family of integral operators. Math., Rev. Anal. Numér. Théor. Approximation, Math. 32(55) (1990), 141-145. MR 1159903 | Zbl 0753.30005
[13] Miller, S. S., Mocanu, P. T.: Differential Subordination: Theory and Applications. Pure and Applied Mathematics, Marcel Dekker 225. Marcel Dekker, New York (2000). DOI 10.1201/9781482289817 | MR 1760285 | Zbl 0954.34003
[14] Oros, G. I., Oros, G.: The notation of subordination in fuzzy sets theory. Gen. Math. 19 (2011), 97-103. MR 2879082 | Zbl 1265.03050
[15] Oros, G. I., Oros, G.: Dominants and best dominants in fuzzy differential subordinations. Stud. Univ. Babeş-Bolyai, Math. 57 (2012), 239-248. MR 2974592 | Zbl 1274.30059
[16] Oros, G. I., Oros, G.: Fuzzy differential subordination. Acta Univ. Apulensis, Math. Inform. 30 (2012), 55-64. MR 3025317 | Zbl 1289.30155
[17] Raina, R. K., Bapna, I. B.: On the starlikeness and convexity of a certain integral operator. Southeast Asian Bull. Math. 33 (2009), 101-108. MR 2481938 | Zbl 1212.30066
[18] Sălăgean, G. S.: Subclasses of univalent functions. Complex Analysis -- Fifth Romanian-Finnish Seminar Lecture Notes in Mathematics 1013. Springer, Berlin (1983), 362-372. DOI 10.1007/BFb0066543 | MR 738107 | Zbl 0531.30009
Partner of
EuDML logo