Previous |  Up |  Next

Article

Keywords:
ramification; cyclic quartic field; discriminant; index
Summary:
If $K$ is the splitting field of the polynomial $f(x)=x^4+px^2+p$ and $p$ is a rational prime of the form $4+n^2$, we give appropriate generators of $K$ to obtain the explicit factorization of the ideal $q{\mathcal O}_{K}$, where $q$ is a positive rational prime. For this, we calculate the index of these generators and integral basis of certain prime ideals.
References:
[1] Alaca, Ş., Spearman, B. K., Williams, K. S.: The factorization of 2 in cubic fields with index 2. Far East J. Math. Sci. (FJMS) 14 (2004), 273-282. MR 2108046 | Zbl 1080.11079
[2] Alaca, Ş., Williams, K. S.: Introductory Algebraic Number Theory. Cambridge University Press, Cambridge (2004). DOI 10.1017/cbo9780511791260 | MR 2031707 | Zbl 1035.11001
[3] Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics 138. Springer, Berlin (1993). DOI 10.1007/978-3-662-02945-9 | MR 1228206 | Zbl 0786.11071
[4] Conrad, K.: Factoring after Dedekind. Available at https://kconrad.math.uconn.edu/blurbs/gradnumthy/dedekindf.pdf 7 pages.
[5] Driver, E., Leonard, P. A., Williams, K. S.: Irreducible quartic polynomials with factorizations modulo $p$. Am. Math. Mon. 112 (2005), 876-890. DOI 10.2307/30037628 | MR 2186831 | Zbl 1211.11037
[6] Engstrom, H. T.: On the common index divisors of an algebraic field. Trans. Am. Math. Soc. 32 (1930), 223-237 \99999JFM99999 56.0885.04. DOI 10.1090/S0002-9947-1930-1501535-0 | MR 1501535
[7] Guàrdia, J., Montes, J., Nart, E.: Higher Newton polygons in the computation of discriminants and prime ideals decomposition in number fields. J. Théor. Nombres Bordx. 23 (2011), 667-696. DOI 10.5802/jtnb.782 | MR 2861080 | Zbl 1266.11131
[8] Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Trans. Am. Math. Soc. 364 (2012), 361-416. DOI 10.1090/S0002-9947-2011-05442-5 | MR 2833586 | Zbl 1252.11091
[9] Hardy, K., Hudson, R. H., Richman, D., Williams, K. S., Holtz, N. M.: Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields. Carleton-Ottawa Mathematical Lecture Note Series 7. Carleton University, Ottawa (1986). Zbl 0615.12009
[10] Hudson, R. H., Williams, K. S.: The integers of a cyclic quartic field. Rocky Mt. J. Math. 20 (1990), 145-150. DOI 10.1216/rmjm/1181073167 | MR 1057983 | Zbl 0707.11078
[11] Kappe, L.-C., Warren, B.: An elementary test for the Galois group of a quartic polynomial. Am. Math. Mon. 96 (1989), 133-137. DOI 10.2307/2323198 | MR 0992075 | Zbl 0702.11075
[12] Llorente, P., Nart, E.: Effective determination of the decomposition of the rational primes in a cubic field. Proc. Am. Math. Soc. 87 (1983), 579-585. DOI 10.1090/S0002-9939-1983-0687621-6 | MR 0687621 | Zbl 0514.12003
[13] Montes, J.: Polígonos de Newton de orden superior y aplicaciones aritméticas: Dissertation Ph.D. Universitat de Barcelona, Barcelona (1999), Spanish.
[14] Spearman, B. K., Williams, K. S.: The index of a cyclic quartic field. Monatsh. Math. 140 (2003), 19-70. DOI 10.1007/s00605-002-0547-3 | MR 2007140 | Zbl 1049.11111
Partner of
EuDML logo