Previous |  Up |  Next

Article

Title: Nobelova cena za fyziku v roce 2020 udělena za výzkum černých děr (Czech)
Title: The 2020 Nobel Prize in Physics awarded for research on black holes (English)
Author: Mészáros, Attila
Language: Czech
Journal: Pokroky matematiky, fyziky a astronomie
ISSN: 0032-2423
Volume: 66
Issue: 4
Year: 2021
Pages: 205-220
Summary lang: Czech
.
Category: physics
.
Summary: Článek věnovaný Nobelovým cenám za fyziku shrnuje teorii i základní pozorovatelské výsledky související se třemi druhy černých děr, neutronovými hvězdami a kvazary. Stručně popisuje příspěvek Rogera Penrose k teorii černých děr a pozorovatelskou činnost dalších dvou laureátů. (Czech)
.
Date available: 2022-01-03T10:24:25Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/149291
.
Reference: [1] Aasi, J.: Searches for continuous gravitational waves from nine young supernova remnants.. Class. Quant. Grav. 32 (2015), 074001.
Reference: [2] Abbott, B. P.: Observation of gravitational waves from a binary black hole merger.. Phys. Rev. Lett. 116 (2016), 061102. MR 3707758, 10.1103/PhysRevLett.116.061102
Reference: [3] An, D., Meissner, A. K., Nurowski, P., Penrose, R.: Apparent evidence for Hawking points in the CMB Sky.. Mon. Not. Roy. Astron. Soc. 495 (2020), 3403–3408. 10.1093/mnras/staa1343
Reference: [4] Baade, W., Zwicky, F.: Cosmic rays from super-novae.. Proc. Nat. Acad. Sci. 20 (1934), 254–263. 10.1073/pnas.20.5.254
Reference: [5] Baade, W., Zwicky, F.: Remarks on super-novae and cosmic rays.. Phys. Rev. 46 (1934), 76–77. 10.1103/PhysRev.46.76.2
Reference: [6] Barish, B. C., Weiss, R.: LIGO and the detection of gravitational waves.. Physics Today 52 (1999), 44. 10.1063/1.882861
Reference: [7] Bejger, M.: Collisional Penrose process near the horizon of extreme Kerr black holes.. Phys. Rev. Lett. 109 (2012), 121101. 10.1103/PhysRevLett.109.121101
Reference: [8] Bombaci, I.: The maximum mass of a neutron star.. Astron. Astrophys. 305 (1996), 871–877.
Reference: [9] Bowyer, S.: Cosmic X-ray sources.. Science 147 (1965), 394–398. 10.1126/science.147.3656.394
Reference: [10] Boyer, R. H., Lindquist, R. W.: Maximal analytic extension of the Kerr metric.. J. Math. Phys. 8 (1967), 265. 10.1063/1.1705193
Reference: [11] Costa, E.: Discovery of an X-ray afterglow associated with the $\gamma$-ray burst of 28 February 1997.. Nature 387 (1997), 783–785.
Reference: [12] Crowther, P. A., Hirschi, R., Walborn, N. R., Yusof, N.: Very massive stars and the Eddington limit.. In: Drissen, L., Robert, C., St-Louis, N., Moffat, A. F. J.: Four decades of massive star research – a scientific meeting in honor of Anthony J. Moffat, Astronomical Society of the Pacific Conference Series 465, 2012, 196–201.
Reference: [13] Di Valentino, E., Mena, O., Pan, S., Visinelli, L., Yang, W., Melchiorri, A., Mota, D. F., Riess, A. G., Silk, J.: In the realm of the Hubble tension—a review of solutions.. Class. Quantum Grav. 38 (2021), 153001. 10.1088/1361-6382/ac086d
Reference: [14] Event Horizon Telescope: Event Horizon Telescope.. https://eventhorizontelescope.org
Reference: [15] Ewing, A.: Black holes in space.. Sci. News Lett. 85 (1964), 39. 10.2307/3947428
Reference: [16] de Gasperin, F.: The LOFAR LBA Sky Survey – I. survey description and preliminary data release.. Astron. Astrophys. 648 (2021), A104. 10.1051/0004-6361/202140316
Reference: [17] Genzel, R.: A forty year journey.. 2021, arXiv: 2102.13000. MR 4453999
Reference: [18] Gold, T.: Rotating neutron stars as the origin of the pulsating radio sources.. Nature 218 (1968), 731–732. 10.1038/218731a0
Reference: [19] Greene, J. E., Strader, J., Ho, L. C.: Intermediate-mass black holes.. Ann. Rev. Astron. Astrophys. 58 (2020), 257–312. 10.1146/annurev-astro-032620-021835
Reference: [20] Han, J. L.: The FAST galactic plane pulsar snapshot survey I.. Project design and pulsar discoveries. Res. Astron. Astrophys. 21 (2021), article no. 107. 10.1088/1674-4527/21/5/107
Reference: [21] Hawking, S.: Gravitationally collapsed objects of very low mass.. Mon. Not. R. Astron. Soc. 152 (1971), 75–78. 10.1093/mnras/152.1.75
Reference: [22] Hawking, S. W., Ellis, G. F. R.: The large scale structure of space time.. Cambridge University Press, 1994.
Reference: [23] Herdeiro, C. A. R., Lemos, J. P. S.: The black hole fifty years after: Genesis of the name.. 2018, arXiv: 1811.06587.
Reference: [24] Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F., Collins, R. A.: Observation of a rapidly pulsating radio source.. Nature 217 (1968), 709–713. 10.1038/217709a0
Reference: [25] Hulse, R. A., Taylor, J. H.: Discovery of a pulsar in a binary system.. Astrophys. J. 195 (1975), L51–L53. 10.1086/181708
Reference: [26] van de Hulst, H. C.: Radio astronomy.. Cambridge University Press, 1957.
Reference: [27] Chadwick, J.: Possible existence of a neutron.. Nature 129 (1932), 312. 10.1038/129312a0
Reference: [28] Jansky, K. G.: Radio waves from outside the solar system.. Nature 132 (1933), 66. 10.1038/132066a0
Reference: [29] Kellermann, K. I.: The discovery of quasars and its aftermath.. J. Astron. Hist. Herit. 17 (2014), 267–282. 10.3724/SP.J.1440-2807.2014.03.03
Reference: [30] Kerr, R. P.: Gravitational field of a spinning mass as an example of algebraically special metrics.. Phys. Rev. Lett. 11 (1963), 237–238. 10.1103/PhysRevLett.11.237
Reference: [31] Kormendy, J., Ho, L.: Coevolution (or not) of supermassive black holes and host galaxies.. Ann. Rev. Astron. Astrophys. 51 (2013), 511–653. 10.1146/annurev-astro-082708-101811
Reference: [32] Kroupa, P., Šubr, L., Jeřábková, T., Wang, L.: Very high redshift quasars and the rapid emergence of supermassive black holes.. Mon. Not. Roy. Astron. Soc. 498 (2020), 5652–5683.
Reference: [33] Landau, L. D., Lifshitz, E. M.: The classical theory of fields.. 4th revised edition, Pergamon Press Ltd., 1975.
Reference: [34] Laplace, P. S.: Exposition du système du monde., tome 2. Paris, 1796.
Reference: [35] Laplace, P. S.: Beweis des Satzes, daß die anziehende Kraft bey einem Weltkörper so groß seyn könne, daß das Licht davon nicht ausströmen kann.. Allgemeine geographische Ephemeriden, Vierter Band (1799), 1–6.
Reference: [36] Lynden-Bell, D., Rees, M. J.: On quasars, dust and the galactic centre.. Mon. Not. Roy. Astron. Soc. 152 (1971), 461–475. 10.1093/mnras/152.4.461
Reference: [37] Michell, J.: On the means of discovering the distance, magnitude, &c. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose.. Phil. Trans. Roy. Soc. 74 (1784), 35–57.
Reference: [38] Misner, C. W., Thorne, K. S., Wheeler, J. A.: Gravitation.. 20th edition, W. H. Freeman, 1997.
Reference: [39] Nakoneczny, S.: Catalog of quasars from the kilo-degree survey data release.. Astron. Astrophys. 624 (2019), A13. 10.1051/0004-6361/201834794
Reference: [40] Oppenheimer, J. R., Snyder, H.: On continued gravitational contraction.. Phys. Rev. 56 (1939), 455–459. 10.1103/PhysRev.56.455
Reference: [41] Oppenheimer, J. R., Volkoff, G. M.: On massive neutron cores.. Phys. Rev. 55 (1939), 374–381. 10.1103/PhysRev.55.374
Reference: [42] Osterbrock, D. E.: Who really coined the word supernova? Who first predicted neutron stars?. Bull. Amer. Astron. Soc. 33 (2001), 1330.
Reference: [43] Pacini, F.: Rotating neutron stars, pulsars and supernova remnants.. Nature 219 (1968), 145–146. 10.1038/219145a0
Reference: [44] Patrignani, C.: Particle physics booklet.. University of California, 2016.
Reference: [45] Penrose, R.: Gravitational collapse and space-time singularities.. Phys. Rev. Lett. 14 (1965), 57–59. 10.1103/PhysRevLett.14.57
Reference: [46] Penrose, R.: Gravitational collapse: the role of General Relativity.. La Rivista del Nuovo Cimento 1 (1969), 252–276.
Reference: [47] Penrose, R.: Collected Works.. Oxford University Press, 2010.
Reference: [48] Penrose, R.: Fashion, faith, and fantasy in the new physics of the universe.. Princeton University Press, 2017. MR 3524782
Reference: [49] Penrose, R., Floyd, R. M.: Extraction of rotational energy from a black hole.. Nature Phys. Sci. 229 (1971), 177–179. 10.1038/physci229177a0
Reference: [50] Planck Collaboration: Planck 2018 results.. VI. Cosmological parameters. Astron. Astrophys. 641 (2020), A6.
Reference: [51] The Nobel Prize: Press release: The Nobel Prize in Physics 2020.. https://www.nobelprize.org/prizes/physics/2020/press-release/
Reference: [52] Reynolds, C. S.: Observational constraints on black hole spin.. Annu. Rev. Astron. Astrophys. 59 (2021), 117–154. 10.1146/annurev-astro-112420-035022
Reference: [53] Rivinius, T., Baade, D., Hadrava, P., Heida, M., Klement, R.: A naked-eye triple system with a nonaccreting black hole in the inner binary.. Astron. Astrophys. 637 (2020), L3. 10.1051/0004-6361/202038020
Reference: [54] Rybicki, G. B., Lightman, A. P.: Radiative processes in astrophysics.. Wiley, 1979.
Reference: [55] Salpeter, E. E.: Accretion of interstellar matter by massive objects.. Astrophys. J. 140 (1964), 796–800. 10.1086/147973
Reference: [56] Shakura, I. N., Sunyaev, R. A.: Black holes in binary systems. Observational appearance.. Astron. Astrophys. 500 (2009), 33–51.
Reference: [57] Schmidt, M.: 3C 273: A star-like object with large red-shift.. Nature 197 (1963), 1040. 10.1038/1971040a0
Reference: [58] Schwarzschild, K.: Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie. Sitzungsber. Preuss. Akad. Wiss. (1916), 189–196. Anglický překlad: On the gravitational field of a point-mass, according to Einstein’s theory. The Abraham Zelmanov Journal 1 (2008), 10–19.
Reference: [59] Silk, J., Rees, M. J.: Quasars and galaxy formation.. Astron. Astrophys. 331 (1998), L1–L4.
Reference: [60] Tanvir, N. R.: A ‘kilonova’ associated with the short-duration $\gamma$-ray burst GRB 130603B.. Nature 500 (2013), 547–549. 10.1038/nature12505
Reference: [61] Teukolsky, S. A.: Deformation of extremal black holes from stringy interactions.. Class. Quant. Grav. 32 (2015), 124006. MR 3354529
Reference: [62] The Event Horizon Telescope Collaboration: First M87 Event Horizon Telescope results.. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875 (2019), L1. 10.3847/2041-8213/ab0ec7
Reference: [63] ScientificAmerican.com: The Smallest Known Black Hole.. https://www.scientificamerican.com/gallery/the-smallest-known-black-hole
Reference: [64] Tolman, R. C.: Relativity, thermodynamics and cosmology.. Clarendon Press, 1934.
Reference: [65] Tyson, J. A.: Obituary: Grote Reber.. Physics Today 56 (2003), 63–64. 10.1063/1.1611360
Reference: [66] Virgo Collaboration: Status of the Virgo project.. Class. Quant. Grav. 28 (2011), 114002. 10.1088/0264-9381/28/11/114002
Reference: [67] Virgo: Virgo Website.. https://www.virgo-gw.eu/
Reference: [68] Weinberg, S.: Gravitation and cosmology: Principles and applications of the general theory of relativity.. John Wiley, 1972.
Reference: [69] Wheeler, J. A.: Our universe: the known and the unknown.. Amer. Scientist 56 (1968), 1–20.
Reference: [70] Wikipedia: Gravitational-wave observatory.. https://en.wikipedia.org/wiki/Gravitational-wave_observatory
Reference: [71] Wikipedia: List of black holes. Stellar black holes and candidates.. https://en.wikipedia.org/wiki/List_of_black_holes#Stellar_black_holes_and_candidates
Reference: [72] Wikipedia: List of gravitational wave observations.. https://en.wikipedia.org/wiki/List_of_gravitational_wave_observations
Reference: [73] Wolszczan, A., Frail, A. D.: A planetary system around the millisecond pulsar PSR1257 + 12.. Nature 355 (1992), 145–147. 10.1038/355145a0
Reference: [74] Zeldovič, J. B., Novikov, I. D.: Strojenije i evolucija vselennoj.. Nauka, 1975.
.

Files

Files Size Format View
PokrokyMFA_66-2021-4_1.pdf 483.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo