| Title: | Some type of semisymmetry on two classes of almost Kenmotsu manifolds (English) | 
| Author: | Dey, Dibakar | 
| Author: | Majhi, Pradip | 
| Language: | English | 
| Journal: | Communications in Mathematics | 
| ISSN: | 1804-1388 (print) | 
| ISSN: | 2336-1298 (online) | 
| Volume: | 29 | 
| Issue: | 3 | 
| Year: | 2021 | 
| Pages: | 457-471 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a $(k,\mu )$-almost Kenmotsu manifold satisfying the curvature condition $Q\cdot R = 0$ is locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$. Also in $(k,\mu )$-almost Kenmotsu manifolds the following conditions: (1) local symmetry $(\nabla R = 0)$, (2) semisymmetry $(R\cdot R = 0)$, (3) $Q(S,R) = 0$, (4) $R\cdot R = Q(S,R)$, (5) locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$ are equivalent. Further, it is proved that a $(k,\mu )'$-almost Kenmotsu manifold satisfying $Q\cdot R = 0$ is locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$ and a $(k,\mu )'$\HH almost Kenmotsu manifold satisfying any one of the curvature conditions $Q(S,R) = 0$ or $R\cdot R = Q(S,R)$ is either an Einstein manifold or locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$. Finally, an illustrative example is presented. (English) | 
| Keyword: | Almost Kenmotsu manifolds | 
| Keyword: | Semisymmetry | 
| Keyword: | Pseudosymmetry | 
| Keyword: | Hyperbolic space. | 
| MSC: | 53C25 | 
| MSC: | 53D15 | 
| idZBL: | Zbl 07484380 | 
| idMR: | MR4355422 | 
| . | 
| Date available: | 2022-01-10T10:08:10Z | 
| Last updated: | 2022-04-28 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/149329 | 
| . | 
| Reference: | [1] Blair, D. E.: Contact Manifolds in Riemannian Geometry.1976, Lecture Notes on Mathematics 509. Springer-Verlag, Berlin-New York,  Zbl 0319.53026 | 
| Reference: | [2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds (second edition).2010, Progress in Mathematics 203. Birkhäuser, Boston,  MR 2682326 | 
| Reference: | [3] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition.Israel. J. Math., 91, 1-3, 1995, 189-214,  Zbl 0837.53038, 10.1007/BF02761646 | 
| Reference: | [4] Dey, D., Majhi, P.: On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions.Facta Univ. Ser. Math. Inform., 33, 2, 2018, 255-268,  MR 3859876 | 
| Reference: | [5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry.Bull. Belg. Math. Soc. Simon Stevin, 14, 2, 2007, 343-354,  MR 2341570, 10.36045/bbms/1179839227 | 
| Reference: | [6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions.J. Geom., 93, 1-2, 2009, 46-61,  Zbl 1204.53025, MR 2501208, 10.1007/s00022-009-1974-2 | 
| Reference: | [7] Ghosh, G., Majhi, P., De, U. C.: On a classification of almost Kenmotsu manifolds with generalized $(k,\mu )'$-nullity distribution.Kyungpook Math. J., 58, 1, 2018, 137-148,  MR 3796023 | 
| Reference: | [8] Kenmotsu, K.: A class of almost contact Riemannian manifolds.Tohoku Math. J. (2), 24, 1972, 93-103,  Zbl 0245.53040 | 
| Reference: | [9] Kowalczyk, D.: On some subclass of semisymmetric manifolds.Soochow J. Math., 27, 4, 2001, 445-461,  MR 1867812 | 
| Reference: | [10] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on almost Kenmotsu manifolds.Int. Elec. J. Geom., 4, 2, 2011, 168-183,  MR 2929587 | 
| Reference: | [11] Verheyen, P., Verstraelen, L.: A new intrinsic characterization of hypercylinders in Euclidean spaces.Kyungpook Math. J., 25, 1, 1985, 1-4, | 
| Reference: | [12] Verstraelen, L.: Comments on pseudosymmetry in the sense of Ryszard Deszcz.In: Geometry and Topology of Submanifolds, VI. River Edge. NJ: World Sci. Publishing, 6, 1994, 199-209, | 
| Reference: | [13] Wang, Y., Liu, X.: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions.Ann. Polon. Math., 112, 1, 2014, 37-46,  MR 3244913, 10.4064/ap112-1-3 | 
| Reference: | [14] Wang, Y., Liu, X.: On $\phi $-recurrent almost Kenmotsu manifolds.Kuwait J. Sci., 42, 1, 2015, 65-77,  MR 3331380 | 
| Reference: | [15] Wang, Y., Wang, W.: Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions.Filomat, 30, 14, 2016, 3807-3816,  MR 3593751, 10.2298/FIL1614807W | 
| . |