Title:
|
Some type of semisymmetry on two classes of almost Kenmotsu manifolds (English) |
Author:
|
Dey, Dibakar |
Author:
|
Majhi, Pradip |
Language:
|
English |
Journal:
|
Communications in Mathematics |
ISSN:
|
1804-1388 (print) |
ISSN:
|
2336-1298 (online) |
Volume:
|
29 |
Issue:
|
3 |
Year:
|
2021 |
Pages:
|
457-471 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The object of the present paper is to study some types of semisymmetry conditions on two classes of almost Kenmotsu manifolds. It is shown that a $(k,\mu )$-almost Kenmotsu manifold satisfying the curvature condition $Q\cdot R = 0$ is locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$. Also in $(k,\mu )$-almost Kenmotsu manifolds the following conditions: (1) local symmetry $(\nabla R = 0)$, (2) semisymmetry $(R\cdot R = 0)$, (3) $Q(S,R) = 0$, (4) $R\cdot R = Q(S,R)$, (5) locally isometric to the hyperbolic space $\mathbb {H}^{2n+1}(-1)$ are equivalent. Further, it is proved that a $(k,\mu )'$-almost Kenmotsu manifold satisfying $Q\cdot R = 0$ is locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$ and a $(k,\mu )'$\HH almost Kenmotsu manifold satisfying any one of the curvature conditions $Q(S,R) = 0$ or $R\cdot R = Q(S,R)$ is either an Einstein manifold or locally isometric to $\mathbb {H}^{n+1}(-4) \times \mathbb {R}^n$. Finally, an illustrative example is presented. (English) |
Keyword:
|
Almost Kenmotsu manifolds |
Keyword:
|
Semisymmetry |
Keyword:
|
Pseudosymmetry |
Keyword:
|
Hyperbolic space. |
MSC:
|
53C25 |
MSC:
|
53D15 |
idZBL:
|
Zbl 07484380 |
idMR:
|
MR4355422 |
. |
Date available:
|
2022-01-10T10:08:10Z |
Last updated:
|
2022-04-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149329 |
. |
Reference:
|
[1] Blair, D. E.: Contact Manifolds in Riemannian Geometry.1976, Lecture Notes on Mathematics 509. Springer-Verlag, Berlin-New York, Zbl 0319.53026 |
Reference:
|
[2] Blair, D. E.: Riemannian Geometry of Contact and Symplectic Manifolds (second edition).2010, Progress in Mathematics 203. Birkhäuser, Boston, MR 2682326 |
Reference:
|
[3] Blair, D. E., Koufogiorgos, T., Papantoniou, B. J.: Contact metric manifolds satisfying a nullity condition.Israel. J. Math., 91, 1-3, 1995, 189-214, Zbl 0837.53038, 10.1007/BF02761646 |
Reference:
|
[4] Dey, D., Majhi, P.: On the quasi-conformal curvature tensor of an almost Kenmotsu manifold with nullity distributions.Facta Univ. Ser. Math. Inform., 33, 2, 2018, 255-268, MR 3859876 |
Reference:
|
[5] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and local symmetry.Bull. Belg. Math. Soc. Simon Stevin, 14, 2, 2007, 343-354, MR 2341570, 10.36045/bbms/1179839227 |
Reference:
|
[6] Dileo, G., Pastore, A. M.: Almost Kenmotsu manifolds and nullity distributions.J. Geom., 93, 1-2, 2009, 46-61, Zbl 1204.53025, MR 2501208, 10.1007/s00022-009-1974-2 |
Reference:
|
[7] Ghosh, G., Majhi, P., De, U. C.: On a classification of almost Kenmotsu manifolds with generalized $(k,\mu )'$-nullity distribution.Kyungpook Math. J., 58, 1, 2018, 137-148, MR 3796023 |
Reference:
|
[8] Kenmotsu, K.: A class of almost contact Riemannian manifolds.Tohoku Math. J. (2), 24, 1972, 93-103, Zbl 0245.53040 |
Reference:
|
[9] Kowalczyk, D.: On some subclass of semisymmetric manifolds.Soochow J. Math., 27, 4, 2001, 445-461, MR 1867812 |
Reference:
|
[10] Pastore, A. M., Saltarelli, V.: Generalized nullity distribution on almost Kenmotsu manifolds.Int. Elec. J. Geom., 4, 2, 2011, 168-183, MR 2929587 |
Reference:
|
[11] Verheyen, P., Verstraelen, L.: A new intrinsic characterization of hypercylinders in Euclidean spaces.Kyungpook Math. J., 25, 1, 1985, 1-4, |
Reference:
|
[12] Verstraelen, L.: Comments on pseudosymmetry in the sense of Ryszard Deszcz.In: Geometry and Topology of Submanifolds, VI. River Edge. NJ: World Sci. Publishing, 6, 1994, 199-209, |
Reference:
|
[13] Wang, Y., Liu, X.: Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions.Ann. Polon. Math., 112, 1, 2014, 37-46, MR 3244913, 10.4064/ap112-1-3 |
Reference:
|
[14] Wang, Y., Liu, X.: On $\phi $-recurrent almost Kenmotsu manifolds.Kuwait J. Sci., 42, 1, 2015, 65-77, MR 3331380 |
Reference:
|
[15] Wang, Y., Wang, W.: Curvature properties of almost Kenmotsu manifolds with generalized nullity conditions.Filomat, 30, 14, 2016, 3807-3816, MR 3593751, 10.2298/FIL1614807W |
. |