Previous |  Up |  Next

Article

Title: On the completeness of total spaces of horizontally conformal submersions (English)
Author: Abbassi, Mohamed Tahar Kadaoui
Author: Lakrini, Ibrahim
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388 (print)
ISSN: 2336-1298 (online)
Volume: 29
Issue: 3
Year: 2021
Pages: 493-504
Summary lang: English
.
Category: math
.
Summary: In this paper, we address the completeness problem of certain classes of Riemannian metrics on vector bundles. We first establish a general result on the completeness of the total space of a vector bundle when the projection is a horizontally conformal submersion with a bound condition on the dilation function, and in particular when it is a Riemannian submersion. This allows us to give completeness results for spherically symmetric metrics on vector bundle manifolds and eventually for the class of Cheeger-Gromoll and generalized Cheeger-Gromoll metrics on vector bundle manifolds. Moreover, we study the completeness of a subclass of $g$\HH natural metrics on tangent bundles and we extend the results to the case of unit tangent sphere bundles. Our proofs are mainly based on techniques of metric topology and on the Hopf-Rinow theorem. (English)
Keyword: Vector bundle
Keyword: spherically symmetric metric
Keyword: complete Riemannian metric
Keyword: complete metric space
Keyword: Hopf-Rinow theorem.
MSC: 53C07
MSC: 53C24
MSC: 53C25
idZBL: Zbl 07484383
idMR: MR4355424
.
Date available: 2022-01-10T10:11:57Z
Last updated: 2022-04-28
Stable URL: http://hdl.handle.net/10338.dmlcz/149332
.
Reference: [1] Abbassi, M.T.K.: $g$-natural metrics: new horizons in the geometry of tangent bundles of Riemannian manifolds.Note. Mat, 28, 1, 2009, 6-35, MR 2640573
Reference: [2] Abbassi, M.T.K.: Métriques Naturelles Riemanniennes sur le Fibré tangent ¸ une variété Riemannienne.Editions Universitaires Européénnes, Saarbrücken, Germany, 2012,
Reference: [3] Abbassi, M.T.K, Calvaruso, G., Perrone, D.: Harmonic Sections of Tangent Bundles Equipped with Riemannian g-Natural Metrics.Quart. J. Math, 62, 2011, 259-288, MR 2805204, 10.1093/qmath/hap040
Reference: [4] Abbassi, M.T.K., Sarih, M.: On some hereditary properties of Riemannian $g$-natural metrics on tangent bundles of Riemannian manifolds.Diff. Geom. Appl, 22, 2005, 19-47, Zbl 1068.53016, MR 2106375
Reference: [5] Albuquerque, R.: On Vector Bundle Manifolds With Spherically Symmetric Metrics.Ann. Global Anal. Geom., 51, 2017, 129-154, MR 3612951, 10.1007/s10455-016-9528-y
Reference: [6] Benyounes, M., Loubeau, E., Wood, C.M.: The geometry of generalized Cheeger-Gromoll metrics.Tokyo J. Math, 32, 2, 2009, 287-312, MR 2589947, 10.3836/tjm/1264170234
Reference: [7] Benyounes, M., Loubeau, E., Wood, C.M.: Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type.Differential Geometry and its Applications, 25, 2007, 322-334, MR 2330461, 10.1016/j.difgeo.2006.11.010
Reference: [8] Besse, A.L.: Einstein Manifolds.1987, Springer-Verlag, Berlin, Heidelberg, Zbl 0613.53001
Reference: [9] Escobales, R.H., JR.: Riemannian submersions with totally geodesic fibers.J. Diff. Geometry, 10, 1975, 253-276,
Reference: [10] Fuglede, B.: Harmonic Morphisms between Riemannian Manifolds.Ann. Inst. Fourier, 28, 1978, 107-144, 10.5802/aif.691
Reference: [11] Gudmundsson, S.: On the Geometry of Harmonic Morphisms.Math. Proc. Camb. Phil. Soc, 108, 1990, 461-466, 10.1017/S0305004100069358
Reference: [12] Gudmundsson, S.: The Geometry of Harmonic Morphisms.1992, Doctoral thesis,
Reference: [13] Hermann, R.: A sufficient condition that a map of Riemannian manifolds be a fiber bundle.Proc. Amer. Math. Soc, 11, 1960, 236-242, 10.1090/S0002-9939-1960-0112151-4
Reference: [14] Ishihara, T.: A Mapping of Riemannian Manifolds which preserves Harmonic Functions.J. Math. Kyoto Univ, 19, 1979, 215-229,
Reference: [15] Kobayashi, S., Nomizu, K.: Foundations of differential geometry Vol.1.1963, Interscince Publishers, New York and London,
Reference: [16] Kowalski, O.: Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold.J. Reine Angew. Math, 250, 1971, 124-129,
Reference: [17] Kowalski, O., Sekizawa, M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles-a classification.Bull. Tokyo Gakugei Univ, 40, 4, 1988, 1-29,
Reference: [18] Kolár, I., Michor, P.W., Slovák, J.: Natural Operations in Differential Geometry.1993, Springer-Verlag, Berlin, Heidelberg,
Reference: [19] Krupka, D., Janyska, J.: Lectures on differential invariants.1990, Univ. of Brno,
Reference: [20] Musso, E., Tricerri, F.: Riemannian metrics on tangent bundles.Ann. Math. Pura Appl, 150, 4, 1988, 1-20, Zbl 0658.53045, 10.1007/BF01761461
Reference: [21] Nagano, T.: On fibred Riemannian manifolds.Sci. Papers College Gen. Ed. Univ. Tokyo, 10, 1960, 17-27,
Reference: [22] O'Neill, B.: The Fundamental Equation of a Submersion.Mich. Math. J, 13, 1966, 459-469, 10.1307/mmj/1028999604
Reference: [23] O'Neill, B.: Submersions and geodesics.Duke Math. J, 34, 1967, 459-469,
Reference: [24] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds I.J. Tohôku Math, 10, 1958, 338-354,
.

Files

Files Size Format View
ActaOstrav_29-2021-3_13.pdf 337.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo