Previous |  Up |  Next

Article

Title: Suzuki type fuzzy $\mathcal {Z}$-contractive mappings and fixed points in fuzzy metric spaces (English)
Author: Gopal, Dhananjay
Author: Martínez-Moreno, Juan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 6
Year: 2021
Pages: 908-921
Summary lang: English
.
Category: math
.
Summary: In this paper, we propose the concept of Suzuki type fuzzy $\mathcal{Z}$-contractive mappings, which is a generalization of Fuzzy $\mathcal{Z}$-contractive mappings initiated in the article [S. Shukla, D. Gopal, W. Sintunavarat, A new class of fuzzy contractive mappings and fixed point theorems, Fuzzy Sets and Systems 350 (2018)85-95]. For this type of contractions suitable conditions are framed to ensure the existence of fixed point in $G$-complete as well as $M$-complete fuzzy metric spaces. A comprehensive set of examples are furnished to demonstrate the validity of the obtained results. (English)
Keyword: fuzzy metric space
Keyword: fuzzy $\mathcal {Z}$-contractive mapping
Keyword: Suzuki type fuzzy $\mathcal {Z}$-contractive mappings
Keyword: fixed point
MSC: 47H10
MSC: 54H25
idZBL: Zbl 07478646
idMR: MR4376867
DOI: 10.14736/kyb-2021-6-0908
.
Date available: 2022-02-04T08:38:52Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149347
.
Reference: [1] Altun, I., Mihet, D.: Ordered Non-Archimedean fuzzy metric spaces and some fixed point results..Fixed Point Theory Appl. 2010 (2010), Article ID 782680. MR 2595842,
Reference: [2] George, A., Veeramani, P.: On some results in fuzzy metric spaces..Fuzzy Sets and Systems 64 (1994), 395-399. Zbl 0843.54014, MR 1289545,
Reference: [3] Gopal, D., Abbas, M., Imdad, M.: $\psi$-weak contractions in fuzzy metric spaces..Iranian Journal of Fuzzy Systems 8(5) (2011), 141-148. MR 2907800
Reference: [4] Gopal, D., Vetro, C.: Some new fixed point theorems in fuzzy metric spaces..Iranian J. Fuzzy Systems 11 (2014), 3, 95-107. MR 3237493
Reference: [5] Grabiec, M.: Fixed points in fuzzy metric spaces..Fuzzy Sets and Systems 27 (1988), 385-389. Zbl 0664.54032, MR 0956385,
Reference: [6] Gregori, V., Sapena, A.: On fixed-point theorems in fuzzy metric spaces..Fuzzy Sets and Systems 125 (2002), 245-252. MR 1880341,
Reference: [7] Gregori, V., Miñana, J-J.: Some remarks on fuzzy contractive mappings..Fuzzy Sets and Systems 251 (2014), 101-103. MR 3226661,
Reference: [8] Gregori, V., Miñana, J-J., Morillas, S.: Some questions in fuzzy metric spaces..Fuzzy Sets and Systems 204 (2012), 71-85. Zbl 1259.54001, MR 2950797,
Reference: [9] Gregori, V., Miñana, J-J.: On fuzzy $\psi$-contractive mappings..Fuzzy Sets and Systems 300 (2016), 93-101. MR 3226661,
Reference: [10] Hadžić, O., Pap, E.: Fixed Point Theory in PM-spaces..Kluwer Academic Publishers, Dordrecht 2001. MR 1896451
Reference: [11] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces..Kybernetica 15 (1975), 326-334. MR 0410633,
Reference: [12] Miheţ, D.: Fuzzy $\psi$-contractive mappings in non-Archimedean fuzzy metric spaces..Fuzzy Sets and Systems 159 (2008), 739-744. MR 2410532,
Reference: [13] Miheţ, D.: A class of contractions in fuzzy metric spaces..Fuzzy Sets and Systems 161 (2010), 1131-1137. MR 2595259,
Reference: [14] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..Elsevier, New York 1983. Zbl 0546.60010, MR 0790314
Reference: [15] Shukla, S., Gopal, D., Rodríguez-López, R.: Fuzzy-Prešić-Ćirić operators and applications to certain nonlinear differential equations..Math. Modell. Anal. 21 (2016), 6, 11-835. MR 3574367,
Reference: [16] Shukla, S., Gopal, D., Sintunavarat, W.: A new class of fuzzy contractive mappings and fixed point theorems..Fuzzy Sets and Systems 350 (2018), 85-95. MR 3852589,
Reference: [17] Suzuki, T.: A generalized Banach contraction principle which characterizes metric completeness..Proc. Amer. Math. Soc. 136 (2008), 5, 1861-1869. MR 2373618,
Reference: [18] Tirado, P.: On compactness and $G$-completeness in fuzzy metric spaces..Iranian J. Fuzzy Systems 9 (2012), 4, 151-158. MR 3113007
Reference: [19] Vasuki, R., Veeramani, P.: Fixed point theorems and Cauchy sequences in fuzzy metric spaces..Fuzzy Sets and Systems 135 (2003), 415-417. MR 1979610,
Reference: [20] Wardowski, D.: Fuzzy contractive mappings and fixed points in fuzzy metric spaces..Fuzzy Sets and Systems 222 (2013), 108-114. MR 3053895,
Reference: [21] Zheng, D., Wang, P.: Meir-Keeler theorems in fuzzy metric spaces..Fuzzy Sets and Systems 370 (2019), 120-128. MR 3960172,
.

Files

Files Size Format View
Kybernetika_57-2021-6_2.pdf 382.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo