Previous |  Up |  Next

Article

Title: Representation and construction of homogeneous and quasi-homogeneous $n$-ary aggregation functions (English)
Author: Su, Yong
Author: Mesiar, Radko
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 6
Year: 2021
Pages: 958-969
Summary lang: English
.
Category: math
.
Summary: Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous $n$-ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous $n$-ary aggregation functions by aggregation of given ones. (English)
Keyword: aggregation functions
Keyword: invariantness
Keyword: homogeneity
Keyword: quasi-homogeneity
MSC: 03E72
idZBL: Zbl 07478649
idMR: MR4376870
DOI: 10.14736/kyb-2021-6-0958
.
Date available: 2022-02-04T08:45:05Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149350
.
Reference: [1] Aczél, J.: Lectures on Functional Equations and their Applications..Acad. Press, New York 1966. MR 0208210
Reference: [2] Alsina, C., Frank, M. J., Schweizer, B.: Associative Functions..Triangular Norms and Copulas, World Scientific Publishing Co., Singapore 2006. MR 2222258
Reference: [3] Dujmovic, J. J.: Weighted conjuctive and disjunctive means and their application in system evaluation..Univ. Beograd Publ. Elektrotech. Fak. 483 (1974), 147-158. MR 0378884,
Reference: [4] Ebanks, B. R.: Quasi-homogeneous associative functions..Int. J. Math. Math. Sci. 21 (1998), 351-358. MR 1609715, 10.1155/S0161171298000489
Reference: [5] Even, Y., Lehrer, E.: Decomposition-integral: unifying Choquet and the concave integrals..Economic Theory 56 (2014), 1, 33-58. MR 3190759,
Reference: [6] Grabisch, M., Marichal, J. L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, New York 2009. Zbl 1206.68299, MR 2538324
Reference: [7] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publisher, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [8] Lima, L., Bedregal, B., Bustince, H., Barrenechea, E., Rocha, M.: An interval extension of homogeneous and pseudo-homogeneous t-norms and t-conorms..Inform. Sci. 355-356 (2016), 328-347.
Reference: [9] Nelsen, R. E.: An Introduction to Copulas. Second edition..Springer, New York 2006. MR 2197664
Reference: [10] Mayor, G., Mesiar, R., Torrens, J.: On quasi-homogeneous copulas..Kybernetika 44 (2008), 6, 745-755. MR 2488902,
Reference: [11] Mesiar, R., Li, J., Pap, E.: Discrete pseudo-integrals..Int. J. Approx. Reasoning 54 (2013), 357-364. Zbl 1267.28018, MR 3021836,
Reference: [12] Mesiar, R., Rückschlossová, T.: Characterization of invariant aggregation operators..Fuzzy Sets and Systems 142 (2004), 63-73. MR 2045343,
Reference: [13] Rückschlossová, T., Rückschloss, R.: Homogeneous aggregation operators..Kybernetika 42(3) (2006), 279-286. MR 2253389
Reference: [14] Xie, A., Su, Y., Liu, H.: On pseudo-homogeneous triangular norms, triangular conorms and proper uninorms..Fuzzy Sets and Systems 287 (2016), 203-212. MR 3447027,
Reference: [15] Su, Y., Zong, W., Mesiar, R.: Characterization of homogeneous and quasi-homogeneous binary aggregation functions..Fuzzy Sets and Systems, in press.
.

Files

Files Size Format View
Kybernetika_57-2021-6_5.pdf 406.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo