Previous |  Up |  Next

Article

Title: Biochemical network of drug-induced enzyme production: Parameter estimation based on the periodic dosing response measurement (English)
Author: Lynnyk, Volodymyr
Author: Papáček, Štěpán
Author: Rehák, Branislav
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 57
Issue: 6
Year: 2021
Pages: 1005-1018
Summary lang: English
.
Category: math
.
Summary: The well-known bottleneck of systems pharmacology, i. e., systems biology applied to pharmacology, refers to the model parameters determination from experimentally measured datasets. This paper represents the development of our earlier studies devoted to inverse (ill-posed) problems of model parameters identification. The key feature of this research is the introduction of control (or periodic forcing by an input signal being a drug intake) of the nonlinear model of drug-induced enzyme production in the form of a system of ordinary differential equations. First, we tested the model features under periodic dosing, and subsequently, we provided an innovative method for a parameter estimation based on the periodic dosing response measurement. A numerical example approved the satisfactory behavior of the proposed algorithm. (English)
Keyword: dynamical system
Keyword: systems pharmacology
Keyword: biochemical network
Keyword: input-output regulation
Keyword: parameter estimation
Keyword: fast Fourier transform
MSC: 34A34
MSC: 65F60
MSC: 65K10
MSC: 92C45
idZBL: Zbl 07478652
idMR: MR4376873
DOI: 10.14736/kyb-2021-6-1005
.
Date available: 2022-02-04T08:50:11Z
Last updated: 2022-02-24
Stable URL: http://hdl.handle.net/10338.dmlcz/149353
.
Reference: [1] Barton, H. A., Chiu, W. A., Setzer, R. W., Andersen, M. E., Bailer, A. J., Bois, F. Y., DeWoskin, R. S., Hays, S., Johanson, G., Jones, N., Loizou, G., MacPhail, R. C., Portier, C. J., Spendiff, M., Tan, Y.-M.: Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation..Toxicolog. Sci. 99 (2007), 2, 395-402. 10.1093/toxsci/kfm100
Reference: [2] Bois, F. Y.: Applications of population approaches in toxicology..Toxicology Letters 120 (2001), 1-3, 385-394.
Reference: [3] Cintrón-Arias, A., Banks, H. T., Capaldi, A., Lloyd, A. L.: A sensitivity matrix based methodology for inverse problem formulation..J. Inverse and Ill-posed Problems 17 (2009), 6. MR 2547126, 10.1515/JIIP.2009.034
Reference: [4] Clewell, H., Andersen, M.: Risk assessment extrapolations and physiological modeling..Toxicology and Industr. Health 1 (1985), 111-–131. 10.1177/074823378500100408
Reference: [5] Clewell, H. J., Gentry, P. R., Covington, T. R., Sarangapani, R., Teeguarden, J. G.: Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry..Toxicolog. Sci. 79 (2004), 2, :381-393.
Reference: [6] Clewell, R., Andersen, M., Barton, H.: A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment..Environmental Health Perspectives 110 (2002), 85–-93.
Reference: [7] Tebbens, J. Duintjer, Matonoha, C., Matthios, A., Papáček, Š.: On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy..Appl. Math. 64 (2019), 2, 253-277. MR 3936970, 10.21136/AM.2019.0284-18
Reference: [8] Galetin, A., Burt, H., Gibbons, L., Houston, J. B.: Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition..Drug Metabolism and Disposition 34 (2005), 1, 166-175.
Reference: [9] Michal, D. S. Gerhard: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. Second edition..Wiley, 2012.
Reference: [10] Gerlowski, L. E., Jain, R. K.: Physiologically based pharmacokinetic modeling: Principles and applications..J. Pharmaceut. Sci. 72 (1983), 10, 1103-1127.
Reference: [11] Huang, J.: Nonlinear output regulation: theory and applications..Advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia, 2004. MR 2308004
Reference: [12] Jia, G., Stephanopoulos, G., Gunawan, R.: Incremental parameter estimation of kinetic metabolic network models..BMC Systems Biology 6 (2012), 142, 1799–-1819.
Reference: [13] Krishnan, K.: Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment..Technical Report, World Health Organization, 2010.
Reference: [14] Luke, N. S., DeVito, M. J., Shah, I., El-Masri, H. A.: Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction..Bull. Math. Biol. 72 (2010), 7, 1799–-1819. MR 2728006, 10.1007/s11538-010-9508-5
Reference: [15] MATLAB: Simulink Toolbox. Simulation and Model-Based Design..The MathWorks Inc., Natick 2020.
Reference: [16] Papáček, Š., Čelikovský, S., Rehák, B., Štys, D.: Experimental design for parameter estimation of two time-scale model of photosynthesis and photoinhibition in microalgae..Math. Computers Simul. 80 (2010), 6, 1302-1309. MR 2610091,
Reference: [17] Papáček, Š., Lynnyk, V., Rehák, B.: Regulatory network of drug-induced enzyme production: parameter estimation based on the periodic dosing response measurement..In: Programs and Algorithms of Numerical Mathematics 20, Institute of Mathematics, Czech Academy of Sciences, 2021.
Reference: [18] Rehák, B.: Alternative method of solution of the regulator equation: L2-space approach..Asian J. Control 14 (2011), 4, 1150-1154. MR 2955458,
Reference: [19] Rehák, B., Čelikovský, S.: Numerical method for the solution of the regulator equation with application to nonlinear tracking..Automatica 44 (2008), 5, 1358-1365. MR 2531803,
Reference: [20] Rehák, B., Čelikovský, S., Papáček, Š.: Model for photosynthesis and photoinhibition: Parameter identification based on the harmonic irradiation $O_{2}$ response measurement..IEEE Trans. Automat. Control 53 (Special Issue) (2008), 101-108. MR 2605133,
Reference: [21] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem..Kybernetika 45 (2009), 427-444. MR 2543132
Reference: [22] Rostami-Hodjegan, A., Tucker, G.: ‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions..Drug Discovery Today: Technologies 1 (2004), 4, 441-448.
Reference: [23] Rowland, M., Peck, C., Tucker, G.: Physiologically-based pharmacokinetics in drug development and regulatory science..Ann. Rev. Pharmacology and Toxicology 51 (2011), 1, 45-73.
Reference: [24] Sakamoto, N., Rehák, B.: Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem..In: IEEE Conference on Decision and Control and European Control Conference, 2011.
Reference: [25] Svecova, L., Vrzal, R., Burysek, L., Anzenbacherova, E., Cerveny, L., Grim, J., Trejtnar, F., Kunes, J., Pour, M., Staud, F., Anzenbacher, P., Dvorak, Z., Pavek, P.: Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression..Drug Metabolism and Disposition 36 (2007), 2, 339-348.
Reference: [26] Zhao, P., Rowland, M., Huang, S.-M.: Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions..Clinical Pharmacology and Therapeutics 92 (2012), 17-–20.
.

Files

Files Size Format View
Kybernetika_57-2021-6_8.pdf 592.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo