Previous |  Up |  Next

Article

Title: Growth conditions for the stability of a class of time-varying perturbed singular systems (English)
Author: Ezzine, Faten
Author: Hammami, Mohamed Ali
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 1
Year: 2022
Pages: 1-24
Summary lang: English
.
Category: math
.
Summary: In this paper, we investigate the problem of stability of linear time-varying singular systems, which are transferable into a standard canonical form. Sufficient conditions on exponential stability and practical exponential stability of solutions of linear perturbed singular systems are obtained based on generalized Gronwall inequalities and Lyapunov techniques. Moreover, we study the problem of stability and stabilization for some classes of singular systems. Finally, we present a numerical example to validate the effectiveness of the abstract results of this paper. (English)
Keyword: linear time–varying singular systems
Keyword: standard canonical form
Keyword: consistent initial conditions
Keyword: Gronwall inequalities
Keyword: Lyapunov techniques
Keyword: practical exponential stability
MSC: 34D20
MSC: 37B55
idZBL: Zbl 07511608
idMR: MR4405944
DOI: 10.14736/kyb-2022-1-0001
.
Date available: 2022-04-08T07:46:45Z
Last updated: 2022-08-11
Stable URL: http://hdl.handle.net/10338.dmlcz/149597
.
Reference: [1] Hamed, B. Ben, Ellouze, I., Hammami, M. A.: Practical uniform stability of nonlinear differential delay equations..Mediterranean J. Math. 8 (2011), 603-616. MR 2860688,
Reference: [2] Abdallah, A. Ben, Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems..J. Dynamic. Control Systems 15 (2009), 45-62. MR 2475660,
Reference: [3] Bellman, R.: The stability of solutions of linear differential equations..Duke Math. J. 10 (1943), 643-647. MR 0009408, 10.1215/S0012-7094-43-01059-2
Reference: [4] Bainov, D., Simenov, P.: Integral Inequalities and Applications..Springer, Kluwer Academic Publishers, Congress, Dordrecht 1992. MR 1171448
Reference: [5] Berger, T.: Bohl exponent for time-varying linear differential-algebraic equations..Int. J. Control 10 (2012), 1433-1451. MR 2972709,
Reference: [6] Berger, T., Ilchmann, A.: On the standard canonical form of time-varying linear DAEs..Quarterly Appl. Math. 71 (2013), 69-87. MR 3075536,
Reference: [7] Berger, T., Ilchmann, A.: On stability of time-varying linear differential-algebraic equations..Int. J. Control 86 (2013), 1060-1076. MR 3226905,
Reference: [8] Campbell, L.: Singular Systems of Differential Equations..Pitman Advanced Publishing Program, London 1980. MR 0569589
Reference: [9] Campbell, S. L.: Singular Systems of Differential Equations II..Pitman Advanced Publishing Program, London 1982. MR 0665426
Reference: [10] Caraballo, T., Ezzine, F., Hammami, M. A.: On the exponential stability of stochastic perturbed singular systems in mean square..Appl. Math. Optim. 84 (2021), 2923-2945. MR 4308217,
Reference: [11] Caraballo, T., Ezzine, F., Hammami, M., Mchiri, L.: Practical stability with respect to a part of variables of stochastic differential equations..Stochastics Int. J. Probab. Stoch. Process. 5 (2021), 647-664. MR 4270858,
Reference: [12] Caraballo, T., Ezzine, F., Hammami, M.: Partial stability analysis of stochastic differential equations with a general decay rate..J. Engrg. Math. 130 (2021), 1-17. MR 4308313,
Reference: [13] Dai, L.: Singular Control Systems..Springer-Verlag, Berlin 1989. MR 0986970
Reference: [14] Debeljkovic, D. Lj., Jovanovic, B., Drakulic, V.: Singular system theory in chemical engineering theory: Stability in the sense of Lyapunov: A survey..Hemijska Industrija 6(2001), 260-272.
Reference: [15] Dragomir, S. S.: Some Gronwall Type Inequalities and Applications..Nova Science Publishers, Hauppauge 2003. MR 2016992
Reference: [16] Gronwall, T. H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations..Ann. Math. 20 (1919), 293-296. MR 1502565,
Reference: [17] Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations Analysis and Numerical Solution..EMS Publishing House, Zurich 2006. MR 2225970
Reference: [18] Luenberger, D. G.: Dynamic equation in descriptor form..IEEE Trans. Automat. Control 22 (1977), 310-319. MR 0479482, 10.1109/TAC.1977.1101502
Reference: [19] Luenberger, D. G.: Time-invariant descriptor systems..Automatica 14 (1978), 473-480.
Reference: [20] Ownes, D. H., Debeljkovic, D. Lj.: Consistency and Liapunov stability of linear descriptor systems: A geometric analysis..IMA J. Math. Control Inform. 2 (1985), 139-151.
Reference: [21] Pham, Q. C., Tabareau, N., Slotine, J. E.: A contraction theory approach to stochastic Incremental stability..IEEE Trans. Automat. Control 54 (2009), 1285-1290. MR 2514815,
Reference: [22] Rosenbrock, H. H.: Structure properties of linear dynamical systems..Int. J. Control 20 (1974), 191-202. MR 0424303,
Reference: [23] Ritt, J. F.: Systems of algebraic differential equations..Ann. Math. 36 (1935), 293-302. MR 1503223, 10.2307/1968571
Reference: [24] Vrabel, R.: Local null controllability of the control-affine nonlinear systems with time-varying disturbances, Direct calculation of the null controllable region..Europ. J. Control 40 (2018), 80-86. MR 3767584,
.

Files

Files Size Format View
Kybernetika_58-2022-1_1.pdf 501.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo