Previous |  Up |  Next

Article

Keywords:
congruence; equivalence relation; probability; semigroup
Summary:
We study the probability that two elements which are selected at random with replacement from a finite semigroup $S$ have the same right matrix.
References:
[1] Ahmedidelir K., Campbell C. M., Doostie H.: Almost commutative semigroups. Algebra Colloq. 18 (2011), Special Issue no. 1, 881–888. DOI 10.1142/S1005386711000769 | MR 2860370
[2] Clifford A. H., Preston G. B.: The Algebraic Theory of Semigroups, Vol. I. Mathematical Surveys, 7, American Mathematical Society, Providence, 1961. MR 0132791
[3] Dixon J. D.: The probability of generating the symmetric group. Math. Z. 110 (1969), 199–205. DOI 10.1007/BF01110210 | MR 0251758
[4] Dixon J. D., Pyber L., Seress Á., Shalev A.: Residual properties of free groups and probabilistic methods. J. Reine Angew. Math. 556 (2003), 159–172. MR 1971144
[5] Eberhard S., Virchow S.-C.: The probability of generating the symmetric group. Combinatorica 39 (2019), no. 2, 273–288. DOI 10.1007/s00493-017-3629-5 | MR 3962902
[6] Gustafson W. H.: What is the probability that two group elements commute?. Amer. Math. Monthly 80 (1973), 1031–1034. DOI 10.1080/00029890.1973.11993437 | MR 0327901
[7] Howie J. M.: An Introduction to Semigroup Theory. L. M. S. Monographs, 7, Academic Press, London, 1976. MR 0466355 | Zbl 0355.20056
[8] MacHale D.: Commutativity in finite rings. Amer. Math. Monthly 83 (1975), no. 1, 30–32. DOI 10.1080/00029890.1976.11994032 | MR 0384861
[9] Nagy A.: Special Classes of Semigroups. Advances in Mathematics (Dordrecht), 1, Kluwer Academic Publishers, Dordrecht, 2001. MR 1777265
[10] Nagy A.: Left reductive congruences on semigroups. Semigroup Forum 87 (2013), no. 1, 129–148. DOI 10.1007/s00233-012-9428-9 | MR 3079776
[11] Nagy A.: On faithful representations of finite semigroups $S$ of degree $|S|$ over the fields. Int. J. of Algebra 7 (2013), no. 1–4, 115–129. DOI 10.12988/ija.2013.13012 | MR 3039386
[12] Nagy A.: Remarks on the paper “M. Kolibiar, On a construction of semigroups". Period. Math. Hungar. 71 (2015), no. 2, 261–264. DOI 10.1007/s10998-015-0094-z | MR 3421700
[13] Nagy A.: Left equalizer simple semigroups. Acta Math. Hungar. 148 (2016), no. 2, 300–311. DOI 10.1007/s10474-015-0578-6 | MR 3498533
[14] Nagy A., Rónyai L.: Finite semigroups whose semigroup algebra over a field has a trivial right annihilator. Int. J. of Contemp. Math. Sci. 9 (2014), no. 1–4, 25–36. DOI 10.12988/ijcms.2014.310115 | MR 3158527
[15] Petrich M.: Lectures in Semigroups. John Wiley & Sons, London, 1977. MR 0466270
Partner of
EuDML logo