Previous |  Up |  Next

Article

Title: Approximations of the ultimate ruin probability in the classical risk model using the Banach's fixed-point theorem and the continuity of the ruin probability (English)
Author: Martínez Sánchez, Jaime
Author: Baltazar-Larios, Fernando
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 2
Year: 2022
Pages: 254-276
Summary lang: English
.
Category: math
.
Summary: In this paper, we show two applications of the Banach's Fixed-Point Theorem: first, to approximate the ultimate ruin probability in the classical risk model or Cramér-Lundberg model when claim sizes have some arbitrary continuous distribution and second, we propose an algorithm based in this theorem and some conditions to guarantee the continuity of the ruin probability with respect to the weak metric (Kantorovich). In risk theory literature, there is no methodology based in the Banach's Fixed-Point Theorem to calculate the ruin probability. Numerical results in this paper, guarantee a good approximation to the analytic solution of the ruin probability problem. Finally, we present numerical examples when claim sizes have distribution light and heavy-tailed. (English)
Keyword: Banach's Fixed-Point Theorem
Keyword: classical risk model
Keyword: continuity of ruin probability
Keyword: probabilistic metric
Keyword: ultimate ruin probability.
idZBL: Zbl 07584156
idMR: MR4467496
DOI: 10.14736/kyb-2022-2-0254
.
Date available: 2022-07-29T12:16:55Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/150467
.
Reference: [1] Asmussen, S., Binswanger, K.: Simulation of ruin probabilities for subexponential claims..ASTIN Bull. 27 (1997), 2, 297-318.
Reference: [2] Asmussen, S., Albrecher, H.: Ruin Probabilities..World Scientific Printers 2010. MR 2766220
Reference: [3] Bladt, M., Nielsen, B. F., Samorodnitsky, G.: Calculation of ruin probabilities for a dense class of heavy-tailed distributions..Scand. Actuar. J. (2015), 573-591. MR 3399704,
Reference: [4] Bladt, M., Nielsen, B. F.: Matrix-exponential Distributions in Applied Probability..Springer, New York 2017. MR 3616926
Reference: [5] Cai, J., Dickson, D. C. M.: Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest..Insurance: Math. Econom. 32 (2002), 61-71. MR 1958769,
Reference: [6] Enikeeva, F., Kalashnikov, V., Rusaityle, D.: Continuity estimates of ruin probabilities..Scand. Actuar. J. 1 (2001), 18-39. MR 1834970,
Reference: [7] Gerber, H. U.: An Introducction to Mathematical Risk Theory..S. S. Huebner Foundation, Wharton School, Philadephia 1979. MR 0579350
Reference: [8] Gerber, H., Shiu, E.: On the time value of ruin..North Amer. Actuar. J. 2 (1998), 48-72. MR 1988433,
Reference: [9] Gordienko, E., Vázquez-Ortega, P.: Simple continuity inequalities for ruin probability in the classical risk model..ASTIN Bull. 46 (2016), 801-814. MR 3551965,
Reference: [10] Granas, A., Dugundji, J.: Fixed Point Theory..New York, Springer-Verlag 2003. MR 1987179
Reference: [11] Hernández-Lerma, O.: Adaptive Markov Control Processes..Springer-Verlag, New York 1989. Zbl 0677.93073, MR 0995463
Reference: [12] Hernández-Lerma, O., Lasserre, J. Bernard: Discrete-Time Markov Control Processes. Basic Optimality Criteria.Springer, Berlin Heidelberg, New York 1996. MR 1363487
Reference: [13] Kallenberg, O.: Probability and Its Applications. Second edition..Springer-Verlag, New York 2002. MR 1876169
Reference: [14] Lee, SC, Lin, XS: Modeling and evaluating insurance losses via mixtures of Erlang distributions..North Amer. Actuar. J. 14 (2010), 1, 107-130. MR 2720423,
Reference: [15] Marceau, E., Rioux, J.: On robustness in risk theory..Insurance: Math. Econom. 29 (2001), 167-185. MR 1865981,
Reference: [16] Maciak, M., Okhrin, O., Pešta, M.: Infinitely stochastic micro reserving..Insurance: Math. Econom. 100 (2021), 30-58. MR 4251563,
Reference: [17] Panjer, H.: Direct calculation of ruin probabilities..J. Risk Insur. 53 (1986), 521-529.
Reference: [18] Rachev, S.: Probability Metrics and the Stability of Stochastic Models..John Wiley and Sons, 1981. MR 1105086
Reference: [19] Rolski, T., Schmidli, H., Teugels, J.: Stochastic Processes for Insurance and Finance..John Wiley and Sons, 1999. MR 1680267
Reference: [20] Ross, S., Schmidli, H.: Applied Probability Models with Optimization Applications. ..Holden-Day, San Francisco 1970. MR 0264792
Reference: [21] Santana, D., González-Hernández, J., Rincón, L.: Approximation of the ultimate ruin probability in the classical risk model using Erlang mixtures..Methodol. Comput. Appl. Probab. 19, (2017), 775-798. MR 3683971,
Reference: [22] Williams, D.: Probability its Martingale..Cambridge University Press, 1991. MR 1155402
.

Files

Files Size Format View
Kybernetika_58-2022-2_7.pdf 1.135Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo