Previous |  Up |  Next

Article

Keywords:
Lucas sequences; Diophantine equation
Summary:
Let $\lbrace U_n\rbrace =\lbrace U_n(P,Q)\rbrace $ and $\lbrace V_n\rbrace =\lbrace V_n(P,Q)\rbrace $ be the Lucas sequences of the first and second kind respectively at the parameters $P \ge 1$ and $Q \in \lbrace -1, 1\rbrace $. In this paper, we provide a technique for characterizing the solutions of the so-called Bartz-Marlewski equation \[ x^2-3xy+y^2+x=0\,, \] where $(x,y)=(U_i, U_j)$ or $(V_i, V_j)$ with $i$, $ j \ge 1$. Then, the procedure of this technique is applied to completely resolve this equation with certain values of such parameters.
References:
[1] Bartz, E., Marlewski, A.: A computer search of solutions of a certain Diophantine equation. Pro Dialog (in Polish, English summary) 10 (2000), 47–57.
[2] Hashim, H.R., Tengely, Sz.: Solutions of a generalized Markoff equation in Fibonacci numbers. Math. Slovaca 70 (2020), no. 5, 1069–1078. DOI:  http://dx.doi.org/https://doi.org/10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 10.1515/ms-2017-0414 DOI 10.1515/ms-2017-0414
[3] Hashim, H.R., Tengely, Sz., Szalay, L.: Markoff-Rosenberger triples and generalized Lucas sequences. Period. Math. Hung. (2021). MR 4469427
[4] Kafle, B., Srinivasan, A., Togbé, A.: Markoff equation with Pell component. Fibonacci Quart. 58 (2020), no. 3, 226–230. MR 4135896
[5] Koshy, T.: Polynomial extensions of two Gibonacci delights and their graph-theoretic confirmations. Math. Sci. 43 (2018), no. 2, 96–108 (English). MR 3888119
[6] Luca, F., Srinivasan, A.: Markov equation with Fibonacci components. Fibonacci Q. 56 (2018), no. 2, 126–129 (English). MR 3813331
[7] Marlewski, A., Zarzycki, P.: Infinitely many positive solutions of the Diophantine equation $x^{2} - kxy + y^{2} + x = 0$. Comput. Math. Appl. 47 (2004), no. 1, 115–121 (English). DOI:  http://dx.doi.org/10.1016/S0898-1221(04)90010-7 DOI 10.1016/S0898-1221(04)90010-7 | MR 2062730
[8] Ribenboim, P.: My numbers, my friends. Popular lectures on number theory. New York, NY: Springer, 2000 (English). MR 1761897
[9] Srinivasan, A.: The Markoff-Fibonacci numbers. Fibonacci Q. 58 (2020), no. 5, 222–228 (English). MR 4202995
[10] Stein, W.thinspaceA., , : Sage Mathematics Software (Version 9.0). The Sage Development Team, 2020, http://www.sagemath.org
Partner of
EuDML logo