[1] Alsina, C., Schweizer, B., Frank, M. J.:
Associative Functions: Triangular Norms and Copulas. World Scientific, 2006.
MR 2222258
[2] Akella, P.:
Structure of red $n$-uninorms. Fuzzy Sets Syst. 158 (2007), 1631-1651.
DOI |
MR 2341328
[3] Baets, B. De:
Idempotent uninorms. Eur. J. Oper. Res. 118 (1999), 631-642.
DOI |
Zbl 1178.03070
[4] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practioners. Springer-Verlag, Berlin-Heidelberg 2007.
[5] Bustince, H., Baets, B. De, Fernandez, J., Mesiar, R., Montero, J.:
A generalization of the migrativity property of aggregation functions. Inf. Sci. 191 (2012), 76-85.
DOI |
MR 2897134
[6] Calvo, T., Mayor, G., (Eds.), R. Mesiar:
Aggregation Operators: New Trends and Applications. Physica-Verlag, Heidelberg, 2002.
MR 2015161 |
Zbl 0983.00020
[7] Durante, F., Sarkoci, P.:
A note on the convex combination of triangular norms. Fuzzy Sets Syst. 159 (2008), 77-80.
DOI |
MR 2371304
[8] Drygaś, P.:
Distributivity between semi-t-operators and semi-nullnorms. Fuzzy Sets Syst. 264 (2015), 100-109.
DOI |
MR 3303666
[9] Fodor, J. C., Yager, R. R., Rybalov, A.:
Structure of uninorms. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 5 (1997), 411-427.
DOI |
MR 1471619 |
Zbl 1232.03015
[10] Fodor, J. C., Rudas, I. J.:
A extension of the migrative property for triangular norms. Fuzzy Sets Syst. 168 (2011), 70-80.
DOI |
MR 2772621
[11] Hu, S. K., Li, Z. F.:
The structure of continuous uninorms. Fuzzy Sets Syst. 124 (2001), 43-52.
DOI |
MR 1859776
[13] Li, G., Liu, H. W., Fodor, J. C.:
On almost equitable uninorms. Kybernetika. 51 (2015), 699-711.
DOI |
MR 3423195
[14] Li, W. H., Qin, F.:
Migrativity equation for uninorms with continuous underlying operators. Fuzzy Sets Syst. 414 (2021), 115-134.
DOI |
MR 4251549
[15] Li, W. H., Qin, F., Zhao, Y. Y.:
A note on uninorms with continuous underlying operators. Fuzzy Sets Syst. 386 (2020), 36-47.
DOI |
MR 4073389
[16] Mesiar, R., Novák, V.:
Open problems. Tatra Mt. Math. Publ. 6 (1995), 195-204.
MR 1363991
[17] Mesiar, R., Novák, V.:
Open problems from the 2nd international conference on fuzzy sets theory and its applications. Fuzzy Sets Syst. 81 (1996), 185-190.
DOI |
MR 1392780
[18] Mesiar, R., Bustince, H., Fernandez, J.:
On the $\alpha$-migrivity of semicopulas, quasi-copulas and copulas. Inf. Sci. 180 (2010), 1967-1976.
DOI |
MR 2596346
[19] Mesiarová-Zemánková, A.:
Characterization of idempotent $n$-uninorms. Fuzzy Sets Syst. 427 (2022), 1-22.
DOI |
MR 4343686
[20] Mesiarová-Zemánková, A.:
Characterizing functions of $n$-uninorms with continuous underlying functions. IEEE Trans. Fuzzy Syst. 30 (2022), 5, 1239-1247.
DOI
[21] Mesiarová-Zemánková, A.:
The $n$-uninorms with continuous underlying t-norms and t-conorms. Int. J. General Syst. 50 (2020), 92-116.
DOI |
MR 4210904
[22] Mesiarová-Zemánková, A.:
Characterization of $n$-uninorms with continuous underlying functions via $z$-ordinal sum construction. Int. J. Approx. Reason. 133 (2021), 60-79.
DOI |
MR 4238981
[23] Mas, M., Monserrat, M., Ruiz-Aguilera, D., Torrens, J.:
An extension of the migrative property for uninorms. Inf. Sci. 246 (2013), 191-198.
DOI |
MR 3073028
[24] Mas, M., Mayor, G., Torrens, J.:
T-operators. Int. J. Uncertain. Fuzziness Knowl.-based Syst. 7 (1999), 31-50.
DOI |
MR 1691482
[25] Mas, M., Mayor, G., Torrens, J.:
The modularity condition for uninorms and t-operators. Fuzzy Sets Syst. 126 (2002), 207-218.
DOI |
MR 1884687
[26] Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J.:
Migrativity of uninorms over t-norms and t-conorms. In: Aggregation Functions in Theory and in Practise (H. Bustince, J. Fernandez, R. Mesiar and T. Calvo, eds.), Springer Berlin, Heidelberg, pp. 155-166, 2013.
DOI |
MR 3588171
[27] Mas, M., Monserat, M., Ruiz-Aguilera, D., Torrens, J.:
Migrativity uninorms and nullnorms over t-norms and t-conorms. Fuzzy Sets Syst. 261 (2015), 20-32.
DOI |
MR 3291483
[28] Ouyang, Y., Fang, J. X.:
Some results of weighted qusi-arithmetic mean of continuous triangular norms. Inf. Sci. 178 (2008), 4396-4402.
DOI |
MR 2459859
[29] Ouyang, Y., Fang, J. X., Li, G. L.:
On the convex combination of $T_D$ and continuous triangular norms. Inf. Sci. 178 (2007), 2945-2953.
DOI |
MR 2333447
[30] Qin, F., Ruiz-Aguilera, D.:
On the $\alpha$-migrativity of idempotent uninorms. Int. J. Uncertain. Fuzziness Knowl.-based Syst. 23 (2015), 105-115.
DOI |
MR 3312783
[31] Ruiz, D., Torrens, J.:
Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21-38.
MR 2068596 |
Zbl 1249.94095
[32] Su, Y., Zong, W., Liu, H. W., Xue, P.:
Migrative property for uninorms and semi-t-operators. Inf. Sci. 325 (2015), 455-465.
DOI |
MR 3392314
[33] Su, Y., Zong, W., Drygaś, P.:
Properties of uninorms with the underlying operation given as ordinal sums. Fuzzy Sets Syst. 357 (2019), 47-57.
DOI |
MR 3913058
[34] Wang, Y. M., Qin, F.:
Distributivity for 2-uninorms over semi-uninorms. Int. J. Uncertain. Fuzziness Knowl.-based Syst. 25 (2017), 317-345.
DOI |
MR 3631939
[35] Wang, Y. M., Zong, W. W., Zhan, H., Liu, H. W.:
On migrative 2-uninorms and nullnorms. Int. J. Uncertain. Fuzziness Knowl.-based Syst. 27 (2019), 303-328.
DOI |
MR 3934799
[36] Wang, Y. M., Liu, H. W.:
On the distributivity equation for uni-nullnorms. Kybernetika 55 (2019), 24-43.
DOI |
MR 3935413
[37] Zong, W. W., Su, Y., Liu, H. W., Baets, B. D.:
On the structure of 2-uninorms. Inf. Sci. 467 (2018), 506-527.
DOI |
MR 3851580