Previous |  Up |  Next

Article

Keywords:
reaction network; model reduction; singular perturbation; quasi-steady-state approximation; D-QSSA method; optimization
Summary:
We develop and test a relatively simple enhancement of the classical model reduction method applied to a class of chemical networks with mass conservation properties. Both the methods, being (i) the standard quasi-steady-state approximation method, and (ii) the novel so-called delayed quasi-steady-state approximation method, firstly proposed by Vejchodský (2014), are extensively presented. Both theoretical and numerical issues related to the setting of delays are discussed. Namely, for one slightly modified variant of an enzyme-substrate reaction network (Michaelis-Menten kinetics), the comparison of the full non-reduced system behavior with respective variants of reduced model is presented and the results discussed. Finally, some future prospects related to further applications of the delayed quasi-steady-state approximation method are proposed.
References:
[1] Bohl, E., Marek, I.: Existence and uniqueness results for nonlinear cooperative systems. Linear Operators and Matrices Operator Theory: Advances and Applications 130. Birkhäuser, Basel (2002), 153-170. DOI 10.1007/978-3-0348-8181-4_12 | MR 1902006 | Zbl 1023.47052
[2] Bohl, E., Marek, I.: Input-output systems in biology and chemistry and a class of mathematical models describing them. Appl. Math., Praha 50 (2005), 219-245. DOI 10.1007/s10492-005-0015-1 | MR 2133728 | Zbl 1099.34006
[3] Briggs, G. E., Haldane, J. B. S.: A note on the kinetics of enzyme action. Biochem. J. 19 (1925), 338-339. DOI 10.1042/bj0190338
[4] Tebbens, J. Duintjer, Matonoha, C., Matthios, A., Papáček, Š.: On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy. Appl. Math., Praha 64 (2019), 253-277. DOI 10.21136/AM.2019.0284-18 | MR 3936970 | Zbl 07088739
[5] Eilertsen, J., Schnell, S.: The quasi-steady-state approximations revisited: Timescales, small parameters, singularities, and normal forms in enzyme kinetics. Math. Biosci. 325 (2020), Article ID 108339, 20 pages. DOI 10.1016/j.mbs.2020.108339 | MR 4110291 | Zbl 1448.92093
[6] Flach, E. H., Schnell, S.: Use and abuse of the quasi-steady-state approximation. IEE Proc. - Syst. Biol. 153 (2006), 187-191. DOI 10.1049/ip-syb:20050104
[7] Härdin, H. M., Zagaris, A., Krab, K., Westerhoff, H. V.: Simplified yet highly accurate enzyme kinetics for cases of low substrate concentrations. FEBS J. 276 (2009), 5491-5506. DOI 10.1111/j.1742-4658.2009.07233.x
[8] Isidori, A.: Nonlinear Control Systems. Communications and Control Engineering Series. Springer, Berlin (1995). DOI 10.1007/978-1-84628-615-5 | MR 1410988 | Zbl 0878.93001
[9] Khalil, H. K.: Nonlinear Systems. Prentice Hall, Upper Saddle River (2002). MR 1201326 | Zbl 1003.34002
[10] Luke, N. S., DeVito, M. J., Shah, I., El-Masri, H. A.: Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. Bull. Math. Biol. 72 (2010), 1799-1819. DOI 10.1007/s11538-010-9508-5 | MR 2728006 | Zbl 1202.92029
[11] Lukšan, L., Tůma, M., Matonoha, C., Vlček, J., Ramešová, N., Šiška, M., Hartman, J.: UFO 2017. Interactive System for Universal Functional Optimization Technical Report V-1252. Institute for Computer Science CAS, Praha (2017), Available at http://www.cs.cas.cz/luksan/ufo.html\kern0pt
[12] Marek, I.: On a class of stochastic models of cell biology: Periodicity and controllability. Positive Systems Lecture Notes in Control and Information Sciences 389. Springer, Berlin (2009), 359-367. DOI 10.1007/978-3-642-02894-6_35 | MR 2596628 | Zbl 1182.93110
[13] Papáček, Š., Lynnyk, V.: Quasi-steady state assumption vs. delayed quasi-steady state assumption: Model reduction tools for biochemical processes. Proceedings of the 23rd International Conference on Process Control IEEE, Danvers (2021), 278-283. DOI 10.1109/PC52310.2021.9447532
[14] Rehák, B.: Observer design for a time delay system via the Razumikhin approach. Asian J. Control 19 (2017), 2226-2231. DOI 10.1002/asjc.1507 | MR 3730209 | Zbl 1386.93057
[15] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.: A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427-444. MR 2543132 | Zbl 1165.93320
[16] Schnell, S.: Validity of the Michaelis-Menten equation -- steady-state or reactant stationary assumption: That is the question. FEBS J. 281 (2014), 464-472. DOI 10.1111/febs.12564
[17] Segel, L. A.: On the validity of the steady state assumption of enzyme kinetics. Bull. Math. Biol. 50 (1988), 579-593. DOI 10.1007/BF02460092 | MR 970614 | Zbl 0653.92006
[18] Segel, L. A., Slemrod, M.: The quasi-steady-state assumption: A case study in perturbation. SIAM Rev. 31 (1989), 446-477. DOI 10.1137/1031091 | MR 1012300 | Zbl 0679.34066
[19] Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences. Texts in Applied Mathematics 57. Springer, New York (2011). DOI 10.1007/978-1-4419-7646-8 | MR 2724792 | Zbl 1227.34001
[20] Snowden, T. J., Graaf, P. H. van der, Tindall, M. J.: Methods of model reduction for large-scale biological systems: A survey of current methods and trends. Bull. Math. Biol. 79 (2017), 1449-1486. DOI 10.1007/s11538-017-0277-2 | MR 3668670 | Zbl 1372.92033
[21] Vejchodský, T.: Accurate reduction of a model of circadian rhythms by delayed quasi-steady state assumptions. Math. Bohem. 139 (2014), 577-585. DOI 10.21136/MB.2014.144135 | MR 3306848 | Zbl 1349.92030
[22] Vejchodský, T., Erban, R., Maini, P. K.: Reduction of chemical systems by delayed quasi-steady state assumptions. Available at https://arxiv.org/abs/1406.4424 (2014), 26 pages.
Partner of
EuDML logo