Previous |  Up |  Next

Article

Title: Isomorphisms between graded Frobenius algebras constructed from twisted superpotentials (English)
Author: Xia, Xuejun
Author: Li, Libin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 72
Issue: 4
Year: 2022
Pages: 1029-1044
Summary lang: English
.
Category: math
.
Summary: In order to distinguish the connected graded Frobenius algebras determined by different twisted superpotentials, we introduce the nondegeneracy of twisted superpotentials. We give the sufficient and necessary condition for connected graded Frobenius algebras determined by two nondegenerate twisted superpotentials to be isomorphic. As an application, we classify the connected $\mathbb Z$-graded Frobenius algebra of length 3, whose dimension of the degree 1 is 2. (English)
Keyword: graded Frobenius algebra
Keyword: coalgebra
Keyword: twisted superpotential
MSC: 16W50
MSC: 16W55
idZBL: Zbl 07655779
idMR: MR4517592
DOI: 10.21136/CMJ.2022.0315-21
.
Date available: 2022-11-28T11:35:17Z
Last updated: 2023-04-11
Stable URL: http://hdl.handle.net/10338.dmlcz/151126
.
Reference: [1] Dăscălescu, S., Năstăsescu, C., Năstăsescu, L.: Frobenius algebras of corepresentations and group-graded vector spaces.J. Algebra 406 (2014), 226-250. Zbl 1318.16029, MR 3188336, 10.1016/j.jalgebra.2014.02.020
Reference: [2] He, J.-W., Xia, X.-J.: Constructions of graded Frobenius algebras.J. Algebra Appl. 19 (2020), Article ID 2050081, 14 pages. Zbl 1457.16043, MR 4114433, 10.1142/S0219498820500814
Reference: [3] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2
Reference: [4] Murray, W.: Nakayama automorphisms of Frobenius algebra.J. Algebra 269 (2003), 599-609. Zbl 1071.16014, MR 2015856, 10.1016/S0021-8693(03)00465-4
Reference: [5] Nakayama, T.: On Frobeniusean algebras. I.Ann. Math. (2) 40 (1939), 611-633 \99999JFM99999 65.0097.04. MR 0000016, 10.2307/1968946
Reference: [6] Nakayama, T.: On Frobeniusean algebras. II.Ann. Math. (2) 42 (1941), 1-21 \99999JFM99999 67.0092.04. MR 0004237, 10.2307/1968984
Reference: [7] Smith, S. P.: Some finite dimensional algebras related elliptic curves.Representation Theory of Algebras and Related Topics CMS Conference Proceedings. AMS, Providence (1996), 315-348. Zbl 0856.16009, MR 1388568
Reference: [8] Wakamatsu, T.: On graded Frobenius algebra.J. Algebra 269 (2003), 377-395. Zbl 1031.16025, MR 2003334, 10.1016/S0021-8693(03)00262-X
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo