Previous |  Up |  Next

Article

Title: Non-surjective linear transformations of tropical matrices preserving the cyclicity index (English)
Author: Guterman, Alexander
Author: Kreines, Elena
Author: Vlasov, Alexander
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 5
Year: 2022
Pages: 691-707
Summary lang: English
.
Category: math
.
Summary: The cyclicity index of a matrix is the cyclicity index of its critical subgraph, namely, the subgraph of the adjacency graph which consists of all cycles of the maximal average weight. The cyclicity index of a graph is the least common multiple of the cyclicity indices of all its maximal strongly connected subgraphs, and the cyclicity index of a strongly connected graph is the least common divisor of the lengths of its (directed) cycles. In this paper we obtain the characterization of linear, possibly non-surjective, transformations of tropical matrices preserving the cyclicity index. It appears that non-bijective maps with these properties exist and all maps are exhausted by transposition, renumbering of vertices, Hadamard multiplication with a matrix of a certain special structure, and certain diagonal transformation. Moreover, only diagonal transformation can be non-bijective. (English)
Keyword: tropical linear algebra
Keyword: cyclicity index
Keyword: linear transformations
MSC: 05C22
MSC: 05C38
MSC: 05C50
idZBL: Zbl 07655855
idMR: MR4538621
DOI: 10.14736/kyb-2022-5-0691
.
Date available: 2023-01-23T16:28:23Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151299
.
Reference: [1] Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity..Wiley 1992. Zbl 0824.93003
Reference: [2] Butkovič, P.: Max-algebra: the linear algebra of combinatorics?.Linear Algebra and its Applications 367 (2003), 313-335. Zbl 1022.15017,
Reference: [3] Dieudonné, D.J.: Sur une généralisation du groupe orthogonal á quatre variables..Arch. Math. 1 (1949), 282-287. 10.1007/BF02038756
Reference: [4] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch lineare Substitutionen..Sitzungsber Deutsch. Akad. Wiss., Berlin 1997.
Reference: [5] Jones, D.: Matrix roots in the max-plus algebra..Linear Algebra and its Applications 631 (2021), 10-34.
Reference: [6] Gavalec, M.: Periodicity in Extremal Algebras..Hradec Králové: Gaudeamus 2004.
Reference: [7] Gavalec, M.: Linear matrix period in max-plus algebra..Linear Algebra and its Applications 307 (2000), 167-182.
Reference: [8] Guterman, A., Johnson, M., Kambites, M.: Linear isomorphisms preserving Green's relations for matrices over anti-negative semifields..Linear Algebra and its Applications 545 (2018), 1-14.
Reference: [9] Guterman, A., Kreines, E., Thomassen, C.: Linear transformations of tropical matrices preserving the cyclicity index..Special Matrices 9 (2021), 112-118.
Reference: [10] Guterman, A., Maksaev, A.: Maps preserving scrambling index..Linear and Multilinear Algebra 66 (2018), 840-851.
Reference: [11] Heidergott, B., Olsder, G.J., Woude, J. van der: Max Plus at Work..Princeton Series in Applied Mathematics 2006.
Reference: [12] Kennedy-Cochran-Patrick, A., Merlet, G., Nowak, T., Sergeev, S.: New bounds on the periodicity transient of the powers of a tropical matrix: Using cyclicity and factor rank..Linear Algebra and its Applications 611 (2021) 279-309.
Reference: [13] Merlet, G., Nowak, T., Sergeev, S.: Weak CSR expansions and transience bounds in max-plus algebra..Linear Algebra and its Applications 461 (2014) 163-199.
Reference: [14] Pierce, S., al., et: A survey of linear preserver problems..Linear Multilinear Algebra 33 (1992), 1-119.
Reference: [15] Rodman, L., Šemrl, P.: A localization technique for linear preserver problems.Linear Algebra and its Applications 433 (2010), 2257-2268.
Reference: [16] Schur, I.: Einige Bemerkungen zur Determinantentheorie..Akad. Wiss. Berlin: S.-Ber. Preuss., (1925) 454-463.
Reference: [17] Sergeev, S.: Max algebraic powers of irreducible matrices in the periodic regime: An application of cyclic classes..Linear Algebra and its Applications 431 (2009), 1325-339.
.

Files

Files Size Format View
Kybernetika_58-2022-5_4.pdf 433.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo