Previous |  Up |  Next

Article

Title: Mersenne numbers as a difference of two Lucas numbers (English)
Author: Alan, Murat
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 63
Issue: 3
Year: 2022
Pages: 269-276
Summary lang: English
.
Category: math
.
Summary: Let $(L_n)_{n\geq 0}$ be the Lucas sequence. We show that the Diophantine equation $ L_n-L_m=M_k$ has only the nonnegative integer solutions $(n,m,k)= (2,0,1)$, $(3, 1, 2)$, $(3, 2, 1)$, $(4, 3, 2)$, $(5, 3, 3)$, $(6, 2, 4)$, $(6, 5, 3)$ where $ M_k=2^k-1 $ is the $k$th Mersenne number and $ n > m$. (English)
Keyword: Lucas number
Keyword: Mersenne number
Keyword: Diophantine equation
Keyword: linear forms in logarithm
MSC: 11B39
MSC: 11D61
MSC: 11J86
idZBL: Zbl 07655799
idMR: MR4542788
DOI: 10.14712/1213-7243.2022.027
.
Date available: 2023-02-01T12:00:20Z
Last updated: 2024-10-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151474
.
Reference: [1] Baker A., Davenport H.: The equations $3x^2-2 =y^2$ and $8x^2-7=z^2$.Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079
Reference: [2] Bravo J. J., Gómez C. A.: Mersenne $k$-Fibonacci numbers.Glas. Matemat. Ser. III 51(71), (2016), no. 2, 307–319. MR 3580200, 10.3336/gm.51.2.02
Reference: [3] Bravo J. J., Luca F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. MR 3066434, 10.5486/PMD.2013.5390
Reference: [4] Bravo J. J., Luca F.: Powers of two as sums of two Lucas numbers.J. Integer Seq. 17 (2014), no. 8, Article 14.8.3, 12 pages. MR 3248227
Reference: [5] Demirtürk Bitim B.: On the Diophantine equation $ L_n-L_m=2 \cdot 3^a$.Period. Math. Hungar. 79 (2019), no. 2, 210–217. MR 4022203, 10.1007/s10998-019-00287-0
Reference: [6] Dujella A., Pethö A.: A generalization of a theorem of Baker and Davenport.Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR 1645552
Reference: [7] Erduvan F., Keskin R.: Nonnegative integer solutions of the equation $ F_n - F_m=5^a$.Turkish J. Math. 43 (2019), no. 3, 1115–1123. MR 3962520, 10.3906/mat-1810-83
Reference: [8] Hardy G. H., Wright E. M.: An Introduction to the Theory of Numbers.The Clarendon Press, Oxford University Press, New York, 1979. MR 0568909
Reference: [9] Kebli S., Kihel O., Larone J., Luca F.: On the nonnegative integer solutions to the equation $ F_n \pm F_m=y^a$.J. Number Theory 220 (2021), 107–127. MR 4177538, 10.1016/j.jnt.2020.08.004
Reference: [10] Koshy T.: Fibonacci and Lucas Numbers with Applications.Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001. MR 1855020
Reference: [11] Matveev E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II.Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252
Reference: [12] Normenyo B. V., Luca F., Togbé A.: Repdigits as sums of four Fibonacci or Lucas numbers.J. Integer Seq. 21 (2018), no. 7, Art. 18.7.7, 30 pages. MR 3858063
Reference: [13] Şiar Z., Keskin R.: On the Diophantine equation $F_n-F_m=2^a$.Colloq. Math. 159 (2020), no. 1, 119–126. MR 4036721, 10.4064/cm7485-12-2018
Reference: [14] Trojovský P.: On the order of appearance of the difference of two Lucas numbers.Miskolc Math. Notes 19 (2018), no. 1, 641–648. MR 3895605, 10.18514/MMN.2018.1750
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_63-2022-3_1.pdf 181.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo