Title:
|
Mersenne numbers as a difference of two Lucas numbers (English) |
Author:
|
Alan, Murat |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
63 |
Issue:
|
3 |
Year:
|
2022 |
Pages:
|
269-276 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(L_n)_{n\geq 0}$ be the Lucas sequence. We show that the Diophantine equation $ L_n-L_m=M_k$ has only the nonnegative integer solutions $(n,m,k)= (2,0,1)$, $(3, 1, 2)$, $(3, 2, 1)$, $(4, 3, 2)$, $(5, 3, 3)$, $(6, 2, 4)$, $(6, 5, 3)$ where $ M_k=2^k-1 $ is the $k$th Mersenne number and $ n > m$. (English) |
Keyword:
|
Lucas number |
Keyword:
|
Mersenne number |
Keyword:
|
Diophantine equation |
Keyword:
|
linear forms in logarithm |
MSC:
|
11B39 |
MSC:
|
11D61 |
MSC:
|
11J86 |
idZBL:
|
Zbl 07655799 |
idMR:
|
MR4542788 |
DOI:
|
10.14712/1213-7243.2022.027 |
. |
Date available:
|
2023-02-01T12:00:20Z |
Last updated:
|
2024-10-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151474 |
. |
Reference:
|
[1] Baker A., Davenport H.: The equations $3x^2-2 =y^2$ and $8x^2-7=z^2$.Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137. MR 0248079 |
Reference:
|
[2] Bravo J. J., Gómez C. A.: Mersenne $k$-Fibonacci numbers.Glas. Matemat. Ser. III 51(71), (2016), no. 2, 307–319. MR 3580200, 10.3336/gm.51.2.02 |
Reference:
|
[3] Bravo J. J., Luca F.: On a conjecture about repdigits in $k$-generalized Fibonacci sequences.Publ. Math. Debrecen 82 (2013), no. 3–4, 623–639. MR 3066434, 10.5486/PMD.2013.5390 |
Reference:
|
[4] Bravo J. J., Luca F.: Powers of two as sums of two Lucas numbers.J. Integer Seq. 17 (2014), no. 8, Article 14.8.3, 12 pages. MR 3248227 |
Reference:
|
[5] Demirtürk Bitim B.: On the Diophantine equation $ L_n-L_m=2 \cdot 3^a$.Period. Math. Hungar. 79 (2019), no. 2, 210–217. MR 4022203, 10.1007/s10998-019-00287-0 |
Reference:
|
[6] Dujella A., Pethö A.: A generalization of a theorem of Baker and Davenport.Quart. J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306. MR 1645552 |
Reference:
|
[7] Erduvan F., Keskin R.: Nonnegative integer solutions of the equation $ F_n - F_m=5^a$.Turkish J. Math. 43 (2019), no. 3, 1115–1123. MR 3962520, 10.3906/mat-1810-83 |
Reference:
|
[8] Hardy G. H., Wright E. M.: An Introduction to the Theory of Numbers.The Clarendon Press, Oxford University Press, New York, 1979. MR 0568909 |
Reference:
|
[9] Kebli S., Kihel O., Larone J., Luca F.: On the nonnegative integer solutions to the equation $ F_n \pm F_m=y^a$.J. Number Theory 220 (2021), 107–127. MR 4177538, 10.1016/j.jnt.2020.08.004 |
Reference:
|
[10] Koshy T.: Fibonacci and Lucas Numbers with Applications.Pure and Applied Mathematics (New York), Wiley-Interscience, New York, 2001. MR 1855020 |
Reference:
|
[11] Matveev E. M.: An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II.Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6, 125–180 (Russian); translation in Izv. Math. 64 (2000), no. 6, 1217–1269. MR 1817252 |
Reference:
|
[12] Normenyo B. V., Luca F., Togbé A.: Repdigits as sums of four Fibonacci or Lucas numbers.J. Integer Seq. 21 (2018), no. 7, Art. 18.7.7, 30 pages. MR 3858063 |
Reference:
|
[13] Şiar Z., Keskin R.: On the Diophantine equation $F_n-F_m=2^a$.Colloq. Math. 159 (2020), no. 1, 119–126. MR 4036721, 10.4064/cm7485-12-2018 |
Reference:
|
[14] Trojovský P.: On the order of appearance of the difference of two Lucas numbers.Miskolc Math. Notes 19 (2018), no. 1, 641–648. MR 3895605, 10.18514/MMN.2018.1750 |
. |