Title: | The new iteration methods for solving absolute value equations (English) |
Author: | Ali, Rashid |
Author: | Pan, Kejia |
Language: | English |
Journal: | Applications of Mathematics |
ISSN: | 0862-7940 (print) |
ISSN: | 1572-9109 (online) |
Volume: | 68 |
Issue: | 1 |
Year: | 2023 |
Pages: | 109-122 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Many problems in operations research, management science, and engineering fields lead to the solution of absolute value equations. In this study, we propose two new iteration methods for solving absolute value equations $ Ax-|x| = b$, where $A \in \mathbb R^{n\times n}$ is an $M$-matrix or strictly diagonally dominant matrix, $b \in \mathbb R^{n}$ and $x \in \mathbb R^{n}$ is an unknown solution vector. Furthermore, we discuss the convergence of the proposed two methods under suitable assumptions. Numerical experiments are given to verify the feasibility, robustness and effectiveness of our methods. (English) |
Keyword: | absolute value equation |
Keyword: | iteration method |
Keyword: | matrix splitting |
Keyword: | linear complementarity problem |
Keyword: | numerical experiment |
MSC: | 65F10 |
MSC: | 65H10 |
MSC: | 90C30 |
idZBL: | Zbl 07655742 |
idMR: | MR4541078 |
DOI: | 10.21136/AM.2021.0055-21 |
. | |
Date available: | 2023-02-03T11:04:52Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151499 |
. | |
Reference: | [1] Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions.J. Comput. Appl. Math. 327 (2018), 196-207. Zbl 1370.90297, MR 3683155, 10.1016/j.cam.2017.06.019 |
Reference: | [2] Ahn, B. H.: Solution of nonsymmetric, linear complementarity problems by iterative methods.J. Optim. Theory Appl. 33 (1981), 175-187. Zbl 0422.90079, MR 613891, 10.1007/BF00935545 |
Reference: | [3] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems.Numer. Linear Algebra Appl. 17 (2010), 917-933. Zbl 1240.65181, MR 2759601, 10.1002/nla.680 |
Reference: | [4] Cruz, J. Y. Bello, Ferreira, O. P., Prudente, L. F.: On the global convergence of the inexact semi-smooth Newton method for absolute value equation.Comput. Optim. Appl. 65 (2016), 93-108. Zbl 1353.90155, MR 3529136, 10.1007/s10589-016-9837-x |
Reference: | [5] Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations.Comput. Optim. Appl. 48 (2011), 45-58. Zbl 1230.90195, MR 2762957, 10.1007/s10589-009-9242-9 |
Reference: | [6] Chen, C., Yu, D., Han, D.: Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations.Available at https://arxiv.org/abs/2001.05781 (2021), 23 pages. MR 3957497 |
Reference: | [7] Cottle, R. W., Pang, J.-S., Stone, R. E.: The Linear Complementarity Problem.Classics in Applied Mathematics 60. SIAM, Philadelphia (2009). Zbl 1192.90001, MR 3396730, 10.1137/1.9780898719000 |
Reference: | [8] Dehghan, M., Hajarian, M.: Convergence of SSOR methods for linear complementarity problems.Oper. Res. Lett. 37 (2009), 219-223. Zbl 1167.90655, MR 2528386, 10.1016/j.orl.2009.01.013 |
Reference: | [9] Dehghan, M., Shirilord, A.: Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation.Appl. Numer. Math. 158 (2020), 425-438. Zbl 1451.65048, MR 4140578, 10.1016/j.apnum.2020.08.001 |
Reference: | [10] Dong, X., Shao, X.-H., Shen, H.-L.: A new SOR-like method for solving absolute value equations.Appl. Numer. Math. 156 (2020), 410-421. Zbl 1435.65049, MR 4103787, 10.1016/j.apnum.2020.05.013 |
Reference: | [11] Edalatpour, V., Hezari, D., Salkuyeh, D. Khojasteh: A generalization of the Gauss-Seidel iteration method for solving absolute value equations.Appl. Math. Comput. 293 (2017), 156-167. Zbl 1411.65068, MR 3549660, 10.1016/j.amc.2016.08.020 |
Reference: | [12] Feng, J., Liu, S.: An improved generalized Newton method for absolute value equations.SpringerPlus 5 (2016), Article ID 1042, 10 pages. MR 3531811, 10.1186/s40064-016-2720-5 |
Reference: | [13] Feng, J., Liu, S.: A new two-step iterative method for solving absolute value equations.J. Inequal. Appl. 39 (2019), Article ID 39, 8 pages. MR 3915073, 10.1186/s13660-019-1969-y |
Reference: | [14] Gu, X.-M., Huang, T.-Z., Li, H.-B., Wang, S.-F., Li, L.: Two CSCS-based iteration methods for solving absolute value equations.J. Appl. Anal. Comput. 7 (2017), 1336-1356. Zbl 1451.65058, MR 3723924, 10.11948/2017082 |
Reference: | [15] Haghani, F. K.: On generalized Traub's method for absolute value equations.J. Optim. Theory Appl. 166 (2015), 619-625. Zbl 1391.65106, MR 3371392, 10.1007/s10957-015-0712-1 |
Reference: | [16] Hashemi, F., Ketabchi, S.: Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations.Numer. Algebra Control Optim. 10 (2020), 13-21. Zbl 07199000, MR 4155105, 10.3934/naco.2019029 |
Reference: | [17] Hu, S.-L., Huang, Z.-H.: A note on absolute value equations.Optim. Lett. 4 (2010), 417-424. Zbl 1202.90251, MR 2653789, 10.1007/s11590-009-0169-y |
Reference: | [18] Ke, Y.: The new iteration algorithm for absolute value equation.Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. Zbl 07112056, MR 3989672, 10.1016/j.aml.2019.07.021 |
Reference: | [19] Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations.Appl. Math. Comput. 311 (2017), 195-202. Zbl 1426.65048, MR 3658069, 10.1016/j.amc.2017.05.035 |
Reference: | [20] Li, C.-X.: A preconditioned AOR iterative method for the absolute value equations.Int. J. Comput. Methods 14 (2017), Article ID 1750016, 12 pages. Zbl 1404.65052, MR 3613077, 10.1142/S0219876217500165 |
Reference: | [21] Li, S.-G., Jiang, H., Cheng, L.-Z., Liao, X.-K.: IGAOR and multisplitting IGAOR methods for linear complementarity problems.J. Comput. Appl. Math. 235 (2011), 2904-2912. Zbl 1211.65072, MR 2771274, 10.1016/j.cam.2010.12.005 |
Reference: | [22] Mangasarian, O. L.: Solution of symmetric linear complementarity problems by iterative methods.J. Optim. Theory Appl. 22 (1977), 465-485. Zbl 0341.65049, MR 458831, 10.1007/BF01268170 |
Reference: | [23] Mangasarian, O. L.: Absolute value equation solution via concave minimization.Optim. Lett. 1 (2007), 3-8. Zbl 1149.90098, MR 2357603, 10.1007/s11590-006-0005-6 |
Reference: | [24] Mangasarian, O. L.: A generalized Newton method for absolute value equations.Optim. Lett. 3 (2009), 101-108. Zbl 1154.90599, MR 2453508, 10.1007/s11590-008-0094-5 |
Reference: | [25] Mangasarian, O. L.: Linear complementarity as absolute value equation solution.Optim. Lett. 8 (2014), 1529-1534. Zbl 1288.90109, MR 3182582, 10.1007/s11590-013-0656-z |
Reference: | [26] Mangasarian, O. L., Meyer, R. R.: Absolute value equations.Linear Algebra Appl. 419 (2006), 359-367. Zbl 1172.15302, MR 2277975, 10.1016/j.laa.2006.05.004 |
Reference: | [27] Mansoori, A., Erfanian, M.: A dynamic model to solve the absolute value equations.J. Comput. Appl. Math. 333 (2018), 28-35. Zbl 1380.65107, MR 3739937, 10.1016/j.cam.2017.09.032 |
Reference: | [28] Mansoori, A., Eshaghnezhad, M., Effati, S.: An efficient neural network model for solving the absolute value equations.IEEE Trans. Circuits Syst., II Exp. Briefs 65 (2017), 391-395. 10.1109/TCSII.2017.2750065 |
Reference: | [29] Mao, X., Wangi, X., Edalatpanah, S. A., Fallah, M.: The monomial preconditioned SSOR method for linear complementarity problem.IEEE Access 7 (2019), 73649-73655. 10.1109/ACCESS.2019.2920485 |
Reference: | [30] Mezzadri, F.: On the solution of general absolute value equations.Appl. Math. Lett. 107 (2020), Article ID 106462, 6 pages. Zbl 07210351, MR 4099341, 10.1016/j.aml.2020.106462 |
Reference: | [31] Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for horizontal linear complementarity problems.Numer. Algorithms 83 (2020), 201-219. Zbl 1431.65087, MR 4056825, 10.1007/s11075-019-00677-y |
Reference: | [32] Miao, X.-H., Yang, J.-T., Saheya, B., Chen, J.-S.: A smoothing Newton method for absolute value equation associated with second-order cone.Appl. Numer. Math. 120 (2017), 82-96. Zbl 1370.65024, MR 3669724, 10.1016/j.apnum.2017.04.012 |
Reference: | [33] Miao, S.-X., Zhang, D.: On the preconditioned GAOR method for a linear complementarity problem with an $M$-matrix.J. Inequal. Appl. 2018 (2018), Article ID 195, 12 pages. MR 3833836, 10.1186/s13660-018-1789-5 |
Reference: | [34] Moosaei, H., Ketabchi, S., Jafari, H.: Minimum norm solution of the absolute value equations via simulated annealing algorithm.Afr. Mat. 26 (2015), 1221-1228. Zbl 1327.90105, MR 3415145, 10.1007/s13370-014-0281-8 |
Reference: | [35] Nguyen, C. T., Saheya, B., Chang, Y.-L., Chen, J.-S.: Unified smoothing functions for absolute value equation associated with second-order cone.Appl. Numer. Math. 135 (2019), 206-227. Zbl 1411.90338, MR 3860558, 10.1016/j.apnum.2018.08.019 |
Reference: | [36] Noor, M. A., Noor, K. I., Batool, S.: On generalized absolute value equations.Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80 (2018), 63-70. Zbl 1424.90220, MR 3887289 |
Reference: | [37] Prokopyev, O.: On equivalent reformulations for absolute value equations.Comput. Optim. Appl. 44 (2009), 363-372. Zbl 1181.90263, MR 2570597, 10.1007/s10589-007-9158-1 |
Reference: | [38] Rohn, J.: A theorem of the alternatives for the equation $Ax+B|x|=b$.Linear Multilinear Algebra 52 (2004), 421-426. Zbl 1070.15002, MR 2102197, 10.1080/0308108042000220686 |
Reference: | [39] Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability.Optim. Lett. 8 (2014), 35-44. Zbl 1316.90052, MR 3152897, 10.1007/s11590-012-0560-y |
Reference: | [40] Saheya, B., Yu, C.-H., Chen, J.-S.: Numerical comparisons based on four smoothing functions for absolute value equation.J. Appl. Math. Comput. 56 (2018), 131-149. Zbl 1390.26020, MR 3770379, 10.1007/s12190-016-1065-0 |
Reference: | [41] Salkuyeh, D. K.: The Picard-HSS iteration method for absolute value equations.Optim. Lett. 8 (2014), 2191-2202. Zbl 1335.90102, MR 3279597, 10.1007/s11590-014-0727-9 |
Reference: | [42] Varga, R. S.: Matrix Iterative Analysis.Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1962). Zbl 0133.08602, MR 0158502, 10.1007/978-3-642-05156-2 |
Reference: | [43] Wang, H. J., Cao, D. X., Liu, H., Qiu, L.: Numerical validation for systems of absolute value equations.Calcolo 54 (2017), 669-683. Zbl 1378.65125, MR 3694720, 10.1007/s10092-016-0204-1 |
Reference: | [44] Wu, S. L., Li, C. X.: A special shift splitting iteration method for absolute value equation.AIMS Math. 5 (2020), 5171-5183. MR 4147504, 10.3934/math.2020332 |
Reference: | [45] Zamani, M., Hladík, M.: A new concave minimization algorithm for the absolute value equation solution.Optim. Lett. 15 (2021), 2141-2154. Zbl 07383574, MR 4300030, 10.1007/s11590-020-01691-z |
Reference: | [46] Zhang, M., Huang, Z.-H., Li, Y.-F.: The sparsest solution to the system of absolute value equations.J. Oper. Res. Soc. China 3 (2015), 31-51. Zbl 1351.90138, MR 3321038, 10.1007/s40305-014-0067-6 |
. |
Fulltext not available (moving wall 24 months)