Previous |  Up |  Next

Article

Title: The new iteration methods for solving absolute value equations (English)
Author: Ali, Rashid
Author: Pan, Kejia
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 1
Year: 2023
Pages: 109-122
Summary lang: English
.
Category: math
.
Summary: Many problems in operations research, management science, and engineering fields lead to the solution of absolute value equations. In this study, we propose two new iteration methods for solving absolute value equations $ Ax-|x| = b$, where $A \in \mathbb R^{n\times n}$ is an $M$-matrix or strictly diagonally dominant matrix, $b \in \mathbb R^{n}$ and $x \in \mathbb R^{n}$ is an unknown solution vector. Furthermore, we discuss the convergence of the proposed two methods under suitable assumptions. Numerical experiments are given to verify the feasibility, robustness and effectiveness of our methods. (English)
Keyword: absolute value equation
Keyword: iteration method
Keyword: matrix splitting
Keyword: linear complementarity problem
Keyword: numerical experiment
MSC: 65F10
MSC: 65H10
MSC: 90C30
idZBL: Zbl 07655742
idMR: MR4541078
DOI: 10.21136/AM.2021.0055-21
.
Date available: 2023-02-03T11:04:52Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151499
.
Reference: [1] Abdallah, L., Haddou, M., Migot, T.: Solving absolute value equation using complementarity and smoothing functions.J. Comput. Appl. Math. 327 (2018), 196-207. Zbl 1370.90297, MR 3683155, 10.1016/j.cam.2017.06.019
Reference: [2] Ahn, B. H.: Solution of nonsymmetric, linear complementarity problems by iterative methods.J. Optim. Theory Appl. 33 (1981), 175-187. Zbl 0422.90079, MR 613891, 10.1007/BF00935545
Reference: [3] Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems.Numer. Linear Algebra Appl. 17 (2010), 917-933. Zbl 1240.65181, MR 2759601, 10.1002/nla.680
Reference: [4] Cruz, J. Y. Bello, Ferreira, O. P., Prudente, L. F.: On the global convergence of the inexact semi-smooth Newton method for absolute value equation.Comput. Optim. Appl. 65 (2016), 93-108. Zbl 1353.90155, MR 3529136, 10.1007/s10589-016-9837-x
Reference: [5] Caccetta, L., Qu, B., Zhou, G.: A globally and quadratically convergent method for absolute value equations.Comput. Optim. Appl. 48 (2011), 45-58. Zbl 1230.90195, MR 2762957, 10.1007/s10589-009-9242-9
Reference: [6] Chen, C., Yu, D., Han, D.: Optimal parameter for the SOR-like iteration method for solving the system of absolute value equations.Available at https://arxiv.org/abs/2001.05781 (2021), 23 pages. MR 3957497
Reference: [7] Cottle, R. W., Pang, J.-S., Stone, R. E.: The Linear Complementarity Problem.Classics in Applied Mathematics 60. SIAM, Philadelphia (2009). Zbl 1192.90001, MR 3396730, 10.1137/1.9780898719000
Reference: [8] Dehghan, M., Hajarian, M.: Convergence of SSOR methods for linear complementarity problems.Oper. Res. Lett. 37 (2009), 219-223. Zbl 1167.90655, MR 2528386, 10.1016/j.orl.2009.01.013
Reference: [9] Dehghan, M., Shirilord, A.: Matrix multisplitting Picard-iterative method for solving generalized absolute value matrix equation.Appl. Numer. Math. 158 (2020), 425-438. Zbl 1451.65048, MR 4140578, 10.1016/j.apnum.2020.08.001
Reference: [10] Dong, X., Shao, X.-H., Shen, H.-L.: A new SOR-like method for solving absolute value equations.Appl. Numer. Math. 156 (2020), 410-421. Zbl 1435.65049, MR 4103787, 10.1016/j.apnum.2020.05.013
Reference: [11] Edalatpour, V., Hezari, D., Salkuyeh, D. Khojasteh: A generalization of the Gauss-Seidel iteration method for solving absolute value equations.Appl. Math. Comput. 293 (2017), 156-167. Zbl 1411.65068, MR 3549660, 10.1016/j.amc.2016.08.020
Reference: [12] Feng, J., Liu, S.: An improved generalized Newton method for absolute value equations.SpringerPlus 5 (2016), Article ID 1042, 10 pages. MR 3531811, 10.1186/s40064-016-2720-5
Reference: [13] Feng, J., Liu, S.: A new two-step iterative method for solving absolute value equations.J. Inequal. Appl. 39 (2019), Article ID 39, 8 pages. MR 3915073, 10.1186/s13660-019-1969-y
Reference: [14] Gu, X.-M., Huang, T.-Z., Li, H.-B., Wang, S.-F., Li, L.: Two CSCS-based iteration methods for solving absolute value equations.J. Appl. Anal. Comput. 7 (2017), 1336-1356. Zbl 1451.65058, MR 3723924, 10.11948/2017082
Reference: [15] Haghani, F. K.: On generalized Traub's method for absolute value equations.J. Optim. Theory Appl. 166 (2015), 619-625. Zbl 1391.65106, MR 3371392, 10.1007/s10957-015-0712-1
Reference: [16] Hashemi, F., Ketabchi, S.: Numerical comparisons of smoothing functions for optimal correction of an infeasible system of absolute value equations.Numer. Algebra Control Optim. 10 (2020), 13-21. Zbl 07199000, MR 4155105, 10.3934/naco.2019029
Reference: [17] Hu, S.-L., Huang, Z.-H.: A note on absolute value equations.Optim. Lett. 4 (2010), 417-424. Zbl 1202.90251, MR 2653789, 10.1007/s11590-009-0169-y
Reference: [18] Ke, Y.: The new iteration algorithm for absolute value equation.Appl. Math. Lett. 99 (2020), Article ID 105990, 7 pages. Zbl 07112056, MR 3989672, 10.1016/j.aml.2019.07.021
Reference: [19] Ke, Y.-F., Ma, C.-F.: SOR-like iteration method for solving absolute value equations.Appl. Math. Comput. 311 (2017), 195-202. Zbl 1426.65048, MR 3658069, 10.1016/j.amc.2017.05.035
Reference: [20] Li, C.-X.: A preconditioned AOR iterative method for the absolute value equations.Int. J. Comput. Methods 14 (2017), Article ID 1750016, 12 pages. Zbl 1404.65052, MR 3613077, 10.1142/S0219876217500165
Reference: [21] Li, S.-G., Jiang, H., Cheng, L.-Z., Liao, X.-K.: IGAOR and multisplitting IGAOR methods for linear complementarity problems.J. Comput. Appl. Math. 235 (2011), 2904-2912. Zbl 1211.65072, MR 2771274, 10.1016/j.cam.2010.12.005
Reference: [22] Mangasarian, O. L.: Solution of symmetric linear complementarity problems by iterative methods.J. Optim. Theory Appl. 22 (1977), 465-485. Zbl 0341.65049, MR 458831, 10.1007/BF01268170
Reference: [23] Mangasarian, O. L.: Absolute value equation solution via concave minimization.Optim. Lett. 1 (2007), 3-8. Zbl 1149.90098, MR 2357603, 10.1007/s11590-006-0005-6
Reference: [24] Mangasarian, O. L.: A generalized Newton method for absolute value equations.Optim. Lett. 3 (2009), 101-108. Zbl 1154.90599, MR 2453508, 10.1007/s11590-008-0094-5
Reference: [25] Mangasarian, O. L.: Linear complementarity as absolute value equation solution.Optim. Lett. 8 (2014), 1529-1534. Zbl 1288.90109, MR 3182582, 10.1007/s11590-013-0656-z
Reference: [26] Mangasarian, O. L., Meyer, R. R.: Absolute value equations.Linear Algebra Appl. 419 (2006), 359-367. Zbl 1172.15302, MR 2277975, 10.1016/j.laa.2006.05.004
Reference: [27] Mansoori, A., Erfanian, M.: A dynamic model to solve the absolute value equations.J. Comput. Appl. Math. 333 (2018), 28-35. Zbl 1380.65107, MR 3739937, 10.1016/j.cam.2017.09.032
Reference: [28] Mansoori, A., Eshaghnezhad, M., Effati, S.: An efficient neural network model for solving the absolute value equations.IEEE Trans. Circuits Syst., II Exp. Briefs 65 (2017), 391-395. 10.1109/TCSII.2017.2750065
Reference: [29] Mao, X., Wangi, X., Edalatpanah, S. A., Fallah, M.: The monomial preconditioned SSOR method for linear complementarity problem.IEEE Access 7 (2019), 73649-73655. 10.1109/ACCESS.2019.2920485
Reference: [30] Mezzadri, F.: On the solution of general absolute value equations.Appl. Math. Lett. 107 (2020), Article ID 106462, 6 pages. Zbl 07210351, MR 4099341, 10.1016/j.aml.2020.106462
Reference: [31] Mezzadri, F., Galligani, E.: Modulus-based matrix splitting methods for horizontal linear complementarity problems.Numer. Algorithms 83 (2020), 201-219. Zbl 1431.65087, MR 4056825, 10.1007/s11075-019-00677-y
Reference: [32] Miao, X.-H., Yang, J.-T., Saheya, B., Chen, J.-S.: A smoothing Newton method for absolute value equation associated with second-order cone.Appl. Numer. Math. 120 (2017), 82-96. Zbl 1370.65024, MR 3669724, 10.1016/j.apnum.2017.04.012
Reference: [33] Miao, S.-X., Zhang, D.: On the preconditioned GAOR method for a linear complementarity problem with an $M$-matrix.J. Inequal. Appl. 2018 (2018), Article ID 195, 12 pages. MR 3833836, 10.1186/s13660-018-1789-5
Reference: [34] Moosaei, H., Ketabchi, S., Jafari, H.: Minimum norm solution of the absolute value equations via simulated annealing algorithm.Afr. Mat. 26 (2015), 1221-1228. Zbl 1327.90105, MR 3415145, 10.1007/s13370-014-0281-8
Reference: [35] Nguyen, C. T., Saheya, B., Chang, Y.-L., Chen, J.-S.: Unified smoothing functions for absolute value equation associated with second-order cone.Appl. Numer. Math. 135 (2019), 206-227. Zbl 1411.90338, MR 3860558, 10.1016/j.apnum.2018.08.019
Reference: [36] Noor, M. A., Noor, K. I., Batool, S.: On generalized absolute value equations.Sci. Bull., Ser. A, Appl. Math. Phys., Politeh. Univ. Buchar. 80 (2018), 63-70. Zbl 1424.90220, MR 3887289
Reference: [37] Prokopyev, O.: On equivalent reformulations for absolute value equations.Comput. Optim. Appl. 44 (2009), 363-372. Zbl 1181.90263, MR 2570597, 10.1007/s10589-007-9158-1
Reference: [38] Rohn, J.: A theorem of the alternatives for the equation $Ax+B|x|=b$.Linear Multilinear Algebra 52 (2004), 421-426. Zbl 1070.15002, MR 2102197, 10.1080/0308108042000220686
Reference: [39] Rohn, J., Hooshyarbakhsh, V., Farhadsefat, R.: An iterative method for solving absolute value equations and sufficient conditions for unique solvability.Optim. Lett. 8 (2014), 35-44. Zbl 1316.90052, MR 3152897, 10.1007/s11590-012-0560-y
Reference: [40] Saheya, B., Yu, C.-H., Chen, J.-S.: Numerical comparisons based on four smoothing functions for absolute value equation.J. Appl. Math. Comput. 56 (2018), 131-149. Zbl 1390.26020, MR 3770379, 10.1007/s12190-016-1065-0
Reference: [41] Salkuyeh, D. K.: The Picard-HSS iteration method for absolute value equations.Optim. Lett. 8 (2014), 2191-2202. Zbl 1335.90102, MR 3279597, 10.1007/s11590-014-0727-9
Reference: [42] Varga, R. S.: Matrix Iterative Analysis.Prentice-Hall Series in Automatic Computation. Prentice-Hall, Englewood Cliffs (1962). Zbl 0133.08602, MR 0158502, 10.1007/978-3-642-05156-2
Reference: [43] Wang, H. J., Cao, D. X., Liu, H., Qiu, L.: Numerical validation for systems of absolute value equations.Calcolo 54 (2017), 669-683. Zbl 1378.65125, MR 3694720, 10.1007/s10092-016-0204-1
Reference: [44] Wu, S. L., Li, C. X.: A special shift splitting iteration method for absolute value equation.AIMS Math. 5 (2020), 5171-5183. MR 4147504, 10.3934/math.2020332
Reference: [45] Zamani, M., Hladík, M.: A new concave minimization algorithm for the absolute value equation solution.Optim. Lett. 15 (2021), 2141-2154. Zbl 07383574, MR 4300030, 10.1007/s11590-020-01691-z
Reference: [46] Zhang, M., Huang, Z.-H., Li, Y.-F.: The sparsest solution to the system of absolute value equations.J. Oper. Res. Soc. China 3 (2015), 31-51. Zbl 1351.90138, MR 3321038, 10.1007/s40305-014-0067-6
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo