Previous |  Up |  Next

Article

Title: Homogeneous colourings of graphs (English)
Author: Madaras, Tomáš
Author: Šurimová, Mária
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 1
Year: 2023
Pages: 105-115
Summary lang: English
.
Category: math
.
Summary: A proper vertex $k$-colouring of a graph $G$ is called $l$-homogeneous if the number of colours in the neigbourhood of each vertex of $G$ equals $l$. We explore basic properties (the existence and the number of used colours) of homogeneous colourings of graphs in general as well as of some specific graph families, in particular planar graphs. (English)
Keyword: proper colouring
Keyword: homogeneous colouring
Keyword: planar graph
Keyword: triangulation
MSC: 05C15
idZBL: Zbl 07655816
idMR: MR4536313
DOI: 10.21136/MB.2022.0007-21
.
Date available: 2023-02-03T11:23:36Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151530
.
Reference: [1] Bala, K.: Homogénne farbenia grafov: BSc. Thesis.P. J. Šafárik University in Košice, Košice (2016), Slovak.
Reference: [2] Behzad, M., Chartrand, G.: No graph is perfect.Am. Math. Mon. 74 (1967), 962-963. Zbl 0179.52701, MR 0220627, 10.2307/2315277
Reference: [3] Bujtás, C., Tuza, Z.: Color-bounded hypergraphs. I. General results.Discrete Math. 309 (2009), 4890-4902. Zbl 1210.05088, MR 2533435, 10.1016/j.disc.2008.04.019
Reference: [4] Diks, K., Kowalik, L., Kurowski, M.: A new 3-color criterion for planar graphs.Graph-Theoretic Concepts in Computer Science Lecture Notes in Computer Science 2573. Springer, Berlin (2002), 138-149. Zbl 1022.05500, MR 2063806, 10.1007/3-540-36379-3_13
Reference: [5] Dobrynin, A. A., Gutman, I., Klavžar, S., Žigert, P.: Wiener index of hexagonal systems.Acta Appl. Math. 72 (2002), 247-294. Zbl 0993.05059, MR 1916949, 10.1023/A:1016290123303
Reference: [6] Everett, M. G., Borgatti, S.: Role colouring a graph.Math. Soc. Sci. 21 (1991), 183-188. Zbl 0771.05037, MR 1113826, 10.1016/0165-4896(91)90080-B
Reference: [7] Feder, T., Hell, P., Subi, C.: Distance-two colourings of Barnette graphs.Eur. J. Comb. 91 (2021), Article ID 103210, 15 pages. Zbl 1458.05065, MR 4161804, 10.1016/j.ejc.2020.103210
Reference: [8] Goddard, W., Wash, K., Xu, H.: WORM colorings.Discuss. Math. Graph Theory 35 (2015), 571-584. Zbl 1317.05055, MR 3368990, 10.7151/dmgt.1814
Reference: [9] Janicová, M., Madaras, T., Soták, R., Lužar, B.: From NMNR-coloring of hypergraphs to homogenous coloring of graphs.Ars Math. Contemp. 12 (2017), 351-360. Zbl 1370.05065, MR 3646700, 10.26493/1855-3974.1083.54f
Reference: [10] Jendrol', S., Maceková, M.: Describing short paths in plane graphs of girth at least 5.Discrete Math. 338 (2015), 149-158. Zbl 1302.05040, MR 3279266, 10.1016/j.disc.2014.09.014
Reference: [11] Kramer, F., Kramer, H.: A survey on the distance-colouring of graphs.Discrete Math. 308 (2008), 422-426. Zbl 1130.05026, MR 2378044, 10.1016/j.disc.2006.11.059
Reference: [12] Montgomery, B.: Dynamic Coloring of Graphs: Ph.D. Thesis.West Virginia University, Morgantown (2001). MR 2702379
Reference: [13] Roberts, F. S., Sheng, L.: How hard is it to determine if a graph has a 2-role assignment?.Networks 37 (2001), 67-73. Zbl 0991.91063, MR 1811997, 10.1002/1097-0037(200103)37:2<67::AID-NET1>3.0.CO;2-9
Reference: [14] Tuza, Z.: Mixed hypergraphs and beyond.Art Discrete Appl. Math. 1 (2018), Article ID P2.05, 11 pages. Zbl 1421.05068, MR 3997091, 10.26493/2590-9770.1234.37b
Reference: [15] West, D. B.: Introduction to Graph Theory.Prentice Hall, Upper Saddle River (1996). Zbl 1121.05304, MR 1367739
.

Files

Files Size Format View
MathBohem_148-2023-1_8.pdf 243.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo