Previous |  Up |  Next

Article

Title: A principal topology obtained from uninorms (English)
Author: Karaçal, Funda
Author: Köroğlu, Tuncay
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 58
Issue: 6
Year: 2022
Pages: 863-882
Summary lang: English
.
Category: math
.
Summary: We obtain a principal topology and some related results. We also give some hints of possible applications. Some mathematical systems are both lattice and topological space. We show that a topology defined on the any bounded lattice is definable in terms of uninorms. Also, we see that these topologies satisfy the condition of the principal topology. These topologies can not be metrizable except for the discrete metric case. We show an equivalence relation on the class of uninorms on a bounded lattice based on equality of the topologies induced by uninorms. (English)
Keyword: uninorm
Keyword: closure operator
Keyword: principal topology
Keyword: bounded lattice
MSC: 03B52
MSC: 03E72
MSC: 06B30
MSC: 06F30
MSC: 08A72
MSC: 54A10
idZBL: Zbl 07655863
idMR: MR4548220
DOI: 10.14736/kyb-2022-6-0863
.
Date available: 2023-02-10T13:46:23Z
Last updated: 2023-03-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151535
.
Reference: [1] Alexandroff, P.: Diskrete Raume..Mat. Sb. 2 (1937), 501-518.
Reference: [2] Arenas, F. G.: Alexandroff spaces..Acta Math. Univ. Comenianae 68 (1999), 17-25. MR 1711071
Reference: [3] Aşıcı, E., Karaçal, F.: On the T-partial order and properties..Inform. Sci. 267 (2014), 323-333. MR 3177320,
Reference: [4] Baczyński, M., Jayaram, B.: Fuzzy Implications..Studies in Fuzziness and Soft Computing, 231, Springer, Berlin, Heidelberg 2008. Zbl 1293.03012, MR 2428086
Reference: [5] Birkhoff, G.: Lattice Theory. Third edition..Providence 1967. MR 0227053
Reference: [6] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets..Kluwer Acad. Publ., Boston 2000. MR 1890229
Reference: [7] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives..Inform. Sci. 36 (1985), 85-121. Zbl 0582.03040, MR 0813766,
Reference: [8] Echi, O.: The category of flows of Set and Top...Topology Appl. { mi 159} (2012), 2357-2366. MR 2921825,
Reference: [9] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices..Int. J. Intell. Systems 30 (2015), 807-817.
Reference: [10] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. Zbl 1232.03015, MR 1471619, 10.1142/S0218488597000312
Reference: [11] Gang, L., Hua-Wen, L.: On properties of uninorms locally internal on the boundary..Fuzzy Sets Systems 332 (2018), 116-128. MR 3732254,
Reference: [12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions..Cambridge University Press, 2009. Zbl 1206.68299, MR 2538324
Reference: [13] İnce, M. A., Karaçal, F., Mesiar, R.: Medians and nullnorms on bounded lattices..Fuzzy Sets Systems 289 (2016),74-81. MR 3454462,
Reference: [14] İnce, M. A., Karaçal, F.: t-closure operators..Int. J. General Systems 48 (2019), 139-156. MR 3892790,
Reference: [15] Karaçal, F., Ertuğrul, U., Kesicioğlu, M. N.: Generating methods for principal topologies on bounded latticies..Kybernetika 57 (2021), 714-736. MR 4332889,
Reference: [16] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Systems 261 (2015), 33-43. MR 3291484,
Reference: [17] Kelley, J. L.: General Topology..Springer, New York 1975. MR 0370454
Reference: [18] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms..Fuzzy Sets Systems 268 (2015), 59-71. MR 3320247,
Reference: [19] Khalimsky, E., Kopperman, R., Meyer, P. R.: Computer graphics and connected topologies on finite ordered sets..Topology Appl. 36 (1990), 1-17. MR 1062180,
Reference: [20] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer, Boston - Dordrecht - London 2000. Zbl 1087.20041, MR 1790096
Reference: [21] Kopperman, R.: The Khalimsky line in digital topology..In: Shape in Picture: Mathematical Description of Shape in Grey-Level Images, NATO ASI Series. Computer and Systems Sciences, Springer, Berlin - Heidelberg - New York 126 (1994), 3-20.
Reference: [22] Kovalevsky, V. A.: Finite topology as applied to image analysis..CVGIP 46 (1989), 141-161.
Reference: [23] Kronheimer, E. H.: The topology of digital images..Topology Appl. 46 (1992), 279-303. MR 1198735,
Reference: [24] Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space..Quaestiones Math. 40 (2017), 1, 17-28. MR 3620975,
Reference: [25] Ma, Z., Wu, W. M.: Logical operators on complete lattices..Inform. Sci. 55 (1991), 77-97. Zbl 0741.03010, MR 1080449,
Reference: [26] Melin, E.: Digital surfaces and boundaries in Khalimsky spaces..J. Math. Imaging Vision 28 (2007), 169-177. MR 2362923,
Reference: [27] Parikh, R., Moss, L. S., Steinsvold, C.: Topology and epistemic logic..In: Handbook of Spatial Logics (2007), 299-341. MR 2393890
Reference: [28] Richmond, B.: Principal topologies and transformation semigroups..Topology Appl. 155 (2008), 1644-1649. MR 2437013,
Reference: [29] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Systems 80 (1996), 111-120. Zbl 0871.04007, MR 1389951,
Reference: [30] Yager, R. R.: Uninorms in fuzzy system modelling..Fuzzy Sets Systems 122 (2001), 167-175. MR 1839955,
Reference: [31] Yager, R. R.: Aggregation operators and fuzzy systems modelling..Fuzzy Sets Systems 67 (1994), 129-145. MR 1302575,
Reference: [32] Wang, Z. D., Fang, J. X.: Residual operators of left and right uninorms on a complete lattice..Fuzzy Sets Systems 160 (2009), 22-31. MR 2469427,
Reference: [33] Wang, Z. D., Fang, J. X.: Residual coimplicators of left and right uninorms on a complete lattice..Fuzzy Sets Systems 160 (2009), 2086-2096. Zbl 1183.03027, MR 2555022,
.

Files

Files Size Format View
Kybernetika_58-2022-6_2.pdf 419.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo