Previous |  Up |  Next

Article

Title: Unique solvability of fractional functional differential equation on the basis of Vallée-Poussin theorem (English)
Author: Srivastava, Satyam Narayan
Author: Domoshnitsky, Alexander
Author: Padhi, Seshadev
Author: Raichik, Vladimir
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 59
Issue: 1
Year: 2023
Pages: 117-123
Summary lang: English
.
Category: math
.
Summary: We propose explicit tests of unique solvability of two-point and focal boundary value problems for fractional functional differential equations with Riemann-Liouville derivative. (English)
Keyword: Riemann-Liouville derivative
Keyword: unique solvability
Keyword: differential inequality
MSC: 26A33
MSC: 34A08
MSC: 34K37
idZBL: Zbl 07675580
idMR: MR4563022
DOI: 10.5817/AM2023-1-117
.
Date available: 2023-02-22T14:34:46Z
Last updated: 2023-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/151556
.
Reference: [1] Agarwal, R.P., Bohner, M., Özbekler, A.: Lyapunov Inequalities and Applications.Springer, Berlin, 2021. MR 4260282
Reference: [2] Azbelev, N.V., Maksimov, V.P., Rakhmatullina, L.F.: Introduction to the Theory of Functional Differential Equations.Hindawi Publishing, 2007. MR 2319815
Reference: [3] Benmezai, A., Saadi, A.: Existence of positive solutions for a nonlinear fractional differential equations with integral boundary conditions.J. Fract. Calc. Appl. 7 (2) (2016), 145–152. MR 3481772
Reference: [4] Domoshnitsky, A., Padhi, S., Srivastava, S.N.: Vallée-Poussin theorem for fractional functional differential equations.Fract. Calc. Appl. Anal. 25 (2022), 1630–1650, https://doi.org/10.1007/s13540-022-00061-z. MR 4468528, 10.1007/s13540-022-00061-z
Reference: [5] Ferreira, R.: A Lyapunov-type inequality for a fractional boundary value problem.Fract. Calc. Appl. Anal. 16 (4) (2013), 978–984, https://doi.org/10.2478/s13540-013-0060-5. MR 3124347, 10.2478/s13540-013-0060-5
Reference: [6] Ferreira, R.A.: Existence and uniqueness of solutions for two-point fractional boundary value problems.Electron. J. Differential Equations 202 (5) (2016). MR 3547391
Reference: [7] Henderson, J., Luca, R.: Boundary Value Problems for Systems of Differential, Difference and Fractional Equations: Positive Solutions.Academic Press, 2015. MR 3430818
Reference: [8] Henderson, J., Luca, R.: Nonexistence of positive solutions for a system of coupled fractional boundary value problems.Bound. Value Probl. 2015 (1) (2015), 1–12. MR 3382857
Reference: [9] Henderson, J., Luca, R.: Positive solutions for a system of semipositone coupled fractional boundary value problems.Bound. Value Probl. 2016 (1) (2016), 1–23. MR 3471318
Reference: [10] Jankowski, T.: Positive solutions to fractional differential equations involving Stieltjes integral conditions.Appl. Math. Comput. 241 (2014), 200–213. MR 3223422, 10.1016/j.amc.2014.04.080
Reference: [11] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations.Elsevier, 2006. Zbl 1092.45003, MR 2218073
Reference: [12] Krasnosel’skii, M.A., Vainikko, G.M., Zabreyko, R.P., Ruticki, Y.B., Stet’senko, V.V.: Approximate Solution of Operator Equations.Springer Science & Business Media, 2012.
Reference: [13] Padhi, S., Graef, J.R., Pati, S.: Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann-Stieltjes integral boundary conditions.Fract. Calc. Appl. Anal. 21 (3) (2018), 716–745, https://doi.org/10.1515/fca-2018-0038. MR 3827151, 10.1515/fca-2018-0038
Reference: [14] Podlubny, I.: Fractional Differential Equations.Academic Press, San Diego, 1999. Zbl 0924.34008
Reference: [15] Qiao, Y., Zhou, Z.: Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions.Adv. Difference Equations 2017 (1) (2017), 1–9. MR 3594502
.

Files

Files Size Format View
ArchMathRetro_059-2023-1_13.pdf 410.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo