[1] Adlakha, V., Kowalski, K.:
On the fixed-charge transportation problem. Omega 27 (1999), 3, 381-388.
DOI
[2] Adlakha, V., Kowalski, K.:
A simple heuristic for solving small fixed-charge transportation problems. Omega 31 (2003), 3, 205-211.
DOI
[3] Adlakha, V., Kowalski, K., Vemuganti, R. R.:
Heuristic algorithms for the fixed-charge transportation problem. Opsearch 43 (2006), 2, 132-151.
DOI 10.1007/BF03398770 |
MR 2764169
[4] Adlakha, V., Kowalski, K., Lev, B.:
A branching method for the fixed charge transportation problem. Omega 38 (2010), 5, 393-397.
DOI |
MR 2764169
[5] Adlakha, V., Kowalski, K., Vemuganti, R. R., Lev, B.:
More-for-less algorithm for fixed-charge transportation problems. Omega: Int. J. Manag. Sci. 35 (2007), 1, 116-127.
DOI
[6] Allen, W. B., Liu, D.: An inventory-transport model with uncertain loss and damage. Logist.Transport. Rev. 29 (1993), 2, 101.
[7] Amorim, P., Meyr, H., Almeder, C., Almada-Lobo, B.: Managing perishability in production-distribution planning: a discussion and review. Flexible Services Manufactur. J. 25 (1993), 3, 389-413.
[8] Amin, S. H., Baki, F.:
A facility location model for global closed-loop supply chain network design. Appl. Math. Modell. 41 (2017), 316-330.
DOI |
MR 3580570
[9] Balinski, M. L.:
Fixed-cost transportation problems. Naval Res. Logistic Quarterly 8 (1961), 1, 41-54.
DOI
[10] Calvete, H. I., Gale, C., Iranzo, J. A., Toth, P.:
A matheuristic for the two-stage fixed-charge transportation problem. Comput. Oper. Res. 95 (2018), 113-122.
DOI |
MR 3789199
[11] Cosma, O., Pop, P. C., D\u{a}nciulescu, D.:
A novel matheuristic approach for a two-stage transportation problem with fixed costs associated to the routes. Comput. Oper. Res. 118 (2020), 104906.
DOI |
MR 4067956
[12] El-Sherbiny, M. M., Alhamali, R. M.:
A hybrid particle swarm algorithm with artificial immune learning for solving the fixed charge transportation problem. Comput. Industr, Engrg. 64 (2013), 2, 610-620.
DOI
[13] Eskandarpour, M., Dejax, P., Peton, O.:
A large neighbourhood search heuristic for supply chain network design. Comput. Oper. Res. 8 (2017), 4, 23-37.
DOI |
MR 3590606
[14] Gottlieb, J., Paulmann, L.:
Genetic algorithms for the fixed charge transportation problems. In: Proc. of the IEEE Conf. on Evolutionary Computation, ICEC 1998, pp. 330-335.
DOI
[15] Hitchcock, F. L.:
Distribution of a product from several sources to numerous locations. J. Math. Physics 20 (1941), 224-230.
DOI |
MR 0004469
[16] Hirsch, W. M., Dantzig, G. B.:
The fixed Charge problem. Naval Res. Log. Quart. 15 (1968), 413-424.
DOI |
MR 0258464
[17] Hong, J., Diabat, A., Panicker, V. V., Rajagopalan, S.:
A two-stage supply chain problem with fixed costs: An ant colony optimization approach. Int. J. Product. Econom. 204 (2018), 214-226.
DOI
[18] Jawahar, N., Balaji, A. N.:
A genetic algorithm for the two-stage supply chain distribution problem associated with a fixed charge. Europ. J. Oper. Res. 194 (2009), 2, 496-537.
DOI
[19] Jawahar, N., Gunasekaran, A., Balaji, N.:
A simulated annealing algorithm to the multi-period fixed charge distribution problem associated with backorder and inventory. Int. J. Prod. Res. 50 (2011), 9, 2533-2554.
DOI
[20] Jo, J. B., Li, Y., Y., Gen, M.:
Nonlinear fixed charge transportation problem by spanning tree-based genetic algorithm. Comput. Industr. Engrg. 53 (2007), 2, 290-298.
DOI
[21] Kartlı, N., Bostancı, E., Güzel, M. S.:
A new algorithm for the initial feasible solutions of fixed charge transportation problem. In: 7th International Conference on Computer Science and Engineering (UBMK), IEEE 2022, pp. 82-85.
DOI
[22] Li, P.:
Solving the sensor cover energy problem via integer linear programming. Kybernetika 57 (2021), 4, 568-593.
DOI
[23] Lin, V.:
Binary integer programming solution for troubleshooting with dependent actions. Kybernetika 53 (2017), 3, 493-512.
DOI |
MR 3684682
[24] Lotfi, M. M., Tavakkoli-Moghaddam, R.:
A genetic algorithm using priority-based encoding with new operators for fixed charge transportation problems. Appl. Soft Comput. 13 (2013), 5, 2711-2726.
DOI
[25] Panicker, V. V., Vanga, R., Sridharan, R.:
Ant colony Optimization algorithm for distribution-allocation problem in a two-stage supply chain with a fixed transportation charge. Int. J. Prod. Res. 51 (2012), 3, 698-717.
DOI
[26] Panicker, V. V., Sridharan, R., Ebenezer, B.:
Three-stage supply chain allocation with fixed cost. J. Manuf. Technol. Manag. 23 (2012), 7, 853-868.
DOI
[27] Pop, P. C., Sabo, C., Biesinger, B., Hu, B., Raidl, G. R.:
Solving the two-stage fixed charge transportation problem with a hybrid genetic algorithm. Carpathian J. Math. 33 (2017), 3, 36-371.
MR 3728059
[28] Raj, K. A. A. D., Rajendran, C.:
A hybrid genetic algorithm for solving single-stage fixed-charge transportation problems. Technol. Oper. Manag. 2 (2011), 1, 1-15.
DOI
[29] Raj, K. A. A. D., Rajendran, C.:
A genetic algorithm for solving the fixed-charge transportation model: two-stage problem. Comput. Oper. Res. 39 (2012), 9, 2016-2032.
DOI
[30] Singh, G., Singh, A.:
Solving fixed-charge transportation problem using a modified particle swarm optimization algorithm. Int. J. System Assurance Engrg. Management 12 (2021), (6), 1073-1086.
DOI
[31] Sun, M., Aronson, J. E., Mckeown, P. G., Drinka, D.:
A tabu search heuristic procedure for the fixed charge transportation problem. Europ. J. Oper. Res. 106 (1999), 2-3, 411-456.
DOI
[32] Tari, F. G., Hashemi, I.:
Prioritized K-mean clustering hybrid GA for discounted fixed charge transportation problems. Comput. Industr. Engrg. 126 (2018), 63-74.
DOI