[1] Ahmed, A., Ahmed, E.:
A survey on mobile edge computing. In: 2016 10th International Conference on Intelligent Systems and Control 2016, pp. 1-8.
DOI
[2] Ahmed, E., Akhunzada, A., Whaiduzzaman, M., Gani, A., Hamid, S. H. Ab, Buyya, R.:
Network-centric performance analysis of runtime application migration in mobile cloud computing. Simul. Modelling Practice Theory 50 (2015), 42-56.
DOI
[3] Alakberov, R.:
Strategy for reducing delays and energy consumption in cloudlet-based mobile cloud computing. Int. J. Wireless Networks Broadband Technol. 10 (2021), 1, 32-44.
DOI
[4] Alakberov, R. G.:
Clustering method of mobile cloud computing according to technical characteristics of cloudlets. Int. J. Computer Network Inform. Security 14 (2022), 3, 75-87.
DOI
[5] Alakbarov, R., Alakbarov, O.:
Procedure of effective use of cloudlets in wireless metropolitan area network environment. Int. J. Computer Networks Commun. 11 (2019), 1 93-107.
DOI
[6] Ala'anzy, M., Othman, M., Hanapi, Z. M., Alrshah, M. A.:
Locust inspired algorithm for cloudlet scheduling in cloud computing environments. Sensors 21 (2021), 7308, 1-19.
DOI
[7] Alguliyev, R. M., Alakbarov, R. G.: Integer programming models for task scheduling and resource allocation in mobile cloud computing. Int. J. Computer Network Inform. Security, 2023 (in press).
[8] Asghar, H., Jung, E. S.:
A survey on scheduling techniques in the edge cloud: issues, challenges and future directions. arXiv.org 2022, 1-19.
DOI
[9] Azad, P., Navimipour, N. J.:
An energy-aware task scheduling in the cloud computing using a hybrid cultural and ant colony optimization algorithm. Int. J. Cloud Appl. Computing 7 (2017), 4, 20-40.
DOI
[10] Bagirov, A. M.:
Modified global k-means algorithm for minimum sum-of-squares clustering problems. Pattern Recognition 41 (2008), 10, 3192-3199.
DOI
[11] Bindu, G. H., Ramani, K., Bindu, C. S.:
Energy aware multi objective genetic algorithm for task scheduling in cloud computing. Int. J. Internet Protocol Technol. 11 (2018), 4, 242-249.
DOI
[12] Bradley, P. S., Bennett, K. P., Demiriz, A.:
Constrained k-means clustering. Technical Report MSR-TR-2000-65, Microsoft Research, Redmond 2000, pp. 1-8.
MR 1770524
[13] Chen, X., Jiao, L., Li, W. Z., Fu, X. M.:
Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Trans. Networking 24 (2015), 5, 2795-2808.
DOI
[14] Chen, L., Zhou, S., Xu, J.:
Computation peer offloading for energy-constrained mobile edge computing in small-cell networks. IEEE ACM Trans. Networking 26 (2018), 4, 1619-1632.
DOI
[15] Dalan, D.:
An overview of edge computing. Int. J. Engrg. Res. Technol. 7 (2019), 5, 1-4.
MR 3828166
[16] Hu, M., Zhuang, L., Wu, D., Zhou, Y. P., Chen, X., Xiao, L.:
Learning driven computation offloading for asymmetrically informed edge computing. IEEE Trans. Parallel Distributed Systems 30 (2019), 8, 1802-1815.
DOI
[17] Liao, K., Yang, J., Miao, L.:
Mobile edge computing offload strategy based on energy aware. In: International Conference on Network Communication and Information Security 2021, pp. 1-9.
DOI |
MR 4439438
[18] Lin, L., Li, P., Xiong, J., Lin, M.:
Distributed and application-aware task scheduling in edge-clouds. In: 2018 14th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) 2018, pp. 165-170.
DOI
[19] Lin, R., Zhou, Z., Luo, S., Xiao, Y., Zukerman, M.:
Distributed optimization for computation offloading in edge computing. IEEE Trans. Wireless Commun. 19 (2020), 12, 8179-8194.
DOI
[20] Luo, Q., Hu, S., Li, C., Li, G., Shi, W.:
Resource scheduling in edge computing: a survey. IEEE Commun. Survey Tutorials 23 (2021), 4, 2131-2165.
DOI
[21] Mach, P., Becvar, Z.:
Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surveys Tutorials 19 (2017), 3, 1628-1656.
DOI |
MR 3476603
[22] Mike, J., Cao, J., Liang, W.:
Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Trans. Cloud Computing 5 (2017), 4, 725-737.
DOI
[23] Mukherjee, A., Priti, D., De, D., Buyya, R.:
IoTF2N: An energy-efficient architectural model for IoT using Femtolet-based fog network. J. Supercomputing 75 (2019), 11, 7125-7146.
DOI
[24] Nasr, A., El-Bahnasawy, N. A., Attiya, G., El-Sayed, A.: Cloudlet scheduling based load balancing on virtual machines in cloud computing environment. J. Internet Technol. 20 (2019), 5, 1376-1378.
[25] Sachula, M., Wang, Y., Miao, Z., Sun, K.:
Joint optimization of wireless bandwidth and computing resource in cloudlet-based mobile cloud computing environment. Peer-to-Peer Networking Appl. 11 (2018), 3, 462-472.
DOI
[26] Sajnani, D. K., Mahesar, A. R., Lakhan, A., Jamali, I. A.:
Latency aware and service delay with task scheduling in mobile edge computing. Commun. Network 10 (2018), 4, Article ID 87708.
DOI
[27] Shen, Y., Bao, Z., Qin, X., Shen, J.:
Adaptive task scheduling strategy in cloud: when energy consumption meets performance guarantee. World Wide Web 20 (2016), 155-173.
DOI
[28] Shenoy, K., Bhokare, P., Pai, U.:
Fog computing future of cloud computing. Int. J. Sci. Res. 4 (2015), 6, 55-56.
DOI
[29] Shreya, G., Mukherjee, A., Ghosh, S., Buyya, R.:
Mobi-IoST: mobility-aware cloud-fog-edge-iot collaborative framework for time-critical applications. IEEE Trans. Network Science Engrg. 7 (2019), 4, 2271-2285.
DOI
[30] Somula, R. S., Ra, S.:
A survey on mobile cloud computing: mobile computing$+$cloud computing (MCC$=$MC$+$CC). Scalable Computing: Practice and Experience 19 (2018) 4, 309-337.
DOI
[31] Vencalek, O., Hlubinka, D.:
A depth-based modification of the k-nearest neighbour method. Kybernetika 57 (2021), 1, 15-37.
DOI |
MR 4231854
[32] Wang, X. Y., Ning, Z. L., Guo, S.:
Multi-agent imitation learning for pervasive edge computing: a decentralized computation offloading algorithm. IEEE Trans. Parallel Distributed Systems 32 (2020), 2, 411-425.
DOI
[33] Yang, L. C., Zhang, H. L., Li, X., Ji, H., Leung, V. C. M.:
A distributed computation offloading strategy in small-cell networks integrated with mobile edge computing. IEEE ACM Trans. Networking 26 (2018), 6, 2762-2773.
DOI
[34] Yuyi, M., You, C., Zhang, J., Huang, K., Letaief, K.:
A survey on mobile edge computing: the communication perspective. IEEE Commun. Surveys Tutorials 19 (2017), 4, 2322-2358.
DOI
[35] Zhang, F., Ge, J., Li, Z., Li, C., Wong, C., Kong, L., Luo, B., Chang, V.:
A load-aware resource allocation and task scheduling for the emerging cloudlet system. Future Generation Computer Systems 87 (2018), 438-456.
DOI
[36] Zhang, P., Zhou, M.:
Dynamic cloud task scheduling based on a two-stage strategy. IEEE Trans. Automat. Sci. Engrg. 15 (2018), 2, 772-783.
DOI