Title:
|
A note on the existence of Gibbs marked point processes with applications in stochastic geometry (English) |
Author:
|
Petráková, Martina |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
59 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
130-159 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper generalizes a recent existence result for infinite-volume marked Gibbs point processes. We try to use the existence theorem for two models from stochastic geometry. First, we show the existence of Gibbs facet processes in $\mathbb{R}^d$ with repulsive interactions. We also prove that the finite-volume Gibbs facet processes with attractive interactions need not exist. Afterwards, we study Gibbs-Laguerre tessellations of $\mathbb{R}^2$. The mentioned existence result cannot be used, since one of its assumptions is not satisfied for tessellations, but we are able to show the existence of an infinite-volume Gibbs-Laguerre process with a particular energy function, under the assumption that we almost surely see a point. (English) |
Keyword:
|
infinite-volume Gibbs measure |
Keyword:
|
existence |
Keyword:
|
Gibbs facet process |
Keyword:
|
Gibbs–Laguerre tessellation |
MSC:
|
60D05 |
MSC:
|
60G55 |
idZBL:
|
Zbl 07675646 |
idMR:
|
MR4567845 |
DOI:
|
10.14736/kyb-2023-1-0130 |
. |
Date available:
|
2023-03-22T14:00:04Z |
Last updated:
|
2023-08-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151587 |
. |
Reference:
|
[1] Dereudre, D.: The existence of quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains..Adv. Appl.Probab. 41 (2009), 3, 664-681. MR 2571312, |
Reference:
|
[2] Dereudre, D.: Introduction to the theory of Gibbs point processes..In: Stochastic Geometry: Modern Research Frontiers, (D. Coupier, ed.), Springer International Publishing, Cham 2019, pp 181-229. MR 3931586, |
Reference:
|
[3] Dereudre, D., Drouilhet, R., Georgii, H. O.: Existence of Gibbsian point processes with geometry-dependent interactions..Probab. Theory Related Fields 153 (2012), 3, 643-670. MR 2948688, |
Reference:
|
[4] Georgii, H. O., Zessin, H.: Large deviations and the maximum entropy principle for marked point random fields..Probab. Theory Related Fields 96 (1993), 2, 177-204. MR 1227031, |
Reference:
|
[5] Jahn, D., Seitl, F.: Existence and simulation of Gibbs-Delaunay-Laguerre tessellations..Kybernetika 56 (2020), 4, 617-645. MR 4168528, |
Reference:
|
[6] Lautensack, C.: Random Laguerre Tessellations..PhD Thesis, University of Karlsruhe, 2007. |
Reference:
|
[7] Moller, J.: Lectures on Random Voronoi Tessellations..Lecture Notes in Statistics, Springer-Verlag, New York 1994. MR 1295245 |
Reference:
|
[8] Moller, J., Waagepetersen, R. P.: Statistical Inference and Simulation for Spatial Point Processes..Monographs on Statistics and Applied Probability. Chapman and Hall/CRC, Boca Raton 2004. MR 2004226 |
Reference:
|
[9] Roelly, S., Zass, A.: Marked Gibbs point processes with unbounded interaction: an existence result..J. Statist. Physics 179 (2020), 4, 972-996. MR 4102445, |
Reference:
|
[10] Ruelle, D.: Statistical Mechanics: Rigorous Results..W. A. Benjamin, Inc., New York - Amsterdam 1969. MR 0289084 |
Reference:
|
[11] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory..Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge 1993. MR 1216521 |
Reference:
|
[12] Schneider, R., Weil, W.: Stochastic and Integral Geometry..Probability and its Applications (New York). Springer-Verlag, Berlin 2008. Zbl 1175.60003, MR 2455326 |
Reference:
|
[13] Večeřa, J., Beneš, V.: Interaction processes for unions of facets, the asymptotic behaviour with increasing intensity..Methodology Computing Appl. Probab. 18 (2016), 4, 1217-1239. MR 3564860, |
Reference:
|
[14] Zessin, H.: Point processes in general position..J. Contempor. Math. Anal. 43 (2008), 1, 59-65. MR 2465001, |
. |