Title:
|
Regulární variace: od škálové invariance ke konvergenčním testům (Czech) |
Title:
|
Regular Variation: From Scale Invariance To Convergence Tests (English) |
Author:
|
Řehák, Pavel |
Language:
|
Czech |
Journal:
|
Pokroky matematiky, fyziky a astronomie |
ISSN:
|
0032-2423 |
Volume:
|
68 |
Issue:
|
1 |
Year:
|
2023 |
Pages:
|
1-28 |
Summary lang:
|
Czech |
. |
Category:
|
math |
. |
Summary:
|
Článek se snaží přiblížit některé aspekty teorie regulární variace. Jde o pojem z klasické analýzy, který má bohatou historii a četné aplikace v teorii pravděpodobnosti, teorii čísel, integrálních transformacích, komplexní analýze, diferenciálních rovnicích, teorii her či teorii grafů. Regulárně měnící se funkce mají souvislost s mnoha matematickými pojmy, včetně škálové invariance, kterou náš výklad začíná, či konvergenčními testy pro nekonečné řady, kterými náš výklad končí. V průběhu výkladu se zastavujeme u některých zásadních momentů vývoje teorie a u vybraných aplikací ve čtyřech z výše jmenovaných oblastí. (Czech) |
MSC:
|
26A12 |
idZBL:
|
Zbl 07790641 |
. |
Date available:
|
2023-03-31T09:25:58Z |
Last updated:
|
2024-12-16 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151598 |
. |
Reference:
|
[1] Appleby, J. A. D., Patterson, D. D.: On necessary and sufficient conditions for preserving convergence rates to equilibrium in deterministically and stochastically perturbed differential equations with regularly varying nonlinearity.. Recent advances in delay differential and difference equations, 1–85, 94, Springer, Cham, 2014. MR 3280185 |
Reference:
|
[2] Avakumović, V. G.: Sur l’équation différentielle de Thomas–Fermi.. Acad. Serbe Sci. Publ. Inst. Math. 1 (1947), 101–113. MR 0028491 |
Reference:
|
[3] Bingham, N. H., Goldie, C. M., Teugels, J. L.: Regular variation.. Cambridge Univ. Press, 1987. MR 0898871 |
Reference:
|
[4] Bingham, N. H.: Regular variation in probability theory.. Publ. Inst. Math. 48 (1990), 169–180. MR 1105151 |
Reference:
|
[5] Bingham, N. H.: Regular variation and probability: the early years.. J. Comput. Appl. Math. 200 (2007), 357–363. MR 2276837, 10.1016/j.cam.2005.11.034 |
Reference:
|
[6] Bingham, N. H.: On scaling and regular variation.. Publ. Inst. Math. 97 (2015), 161–174. MR 3331244, 10.2298/PIM140202002B |
Reference:
|
[7] Bingham, N. H., Ostaszewski, A. J.: Extremes and regular variation.. Progr. Probab. 78 (2021), 121–137. MR 4425788, 10.1007/978-3-030-83309-1_7 |
Reference:
|
[8] Bohner, M., Peterson, A. C.: Dynamic equations on time scales: An introduction with applications.. Birkhäuser, Boston, 2001. MR 1843232 |
Reference:
|
[9] Bojanić, R., Seneta, E.: A unified theory of regularly varying sequences.. Math. Z. 134 (1973), 91–106. MR 0333082, 10.1007/BF01214468 |
Reference:
|
[10] de Bruijn, N. G., van Lint, J. H.: Incomplete sums of multiplicative functions I, II.. Nederl. Akad. Wetensch. Proc. Ser. A 67, Indag. Math. 26 (1964), 339–347, 348–359. MR 0174530, 10.1016/S1385-7258(64)50040-2 |
Reference:
|
[11] Delange, H.: Théoremes taubériens et applications arithmétiques.. Mém. Soc. Roy. Sci. Liege 16 (1955), 87 pp. MR 0076923 |
Reference:
|
[12] Evtukhov, V. M., Samoilenko, A. M.: Asymptotic representations of solutions of nonautonomous ordinary differential equations with regularly varying nonlinearities. (Russian). Differ. Uravn. 47 (2011), 628–650; translation in Differ. Equ. 47 (2011), 627–649. Zbl 1242.34092, MR 2918280 |
Reference:
|
[13] Feller, W.: An introduction to probability theory and its applications, Vol. II.. Second edition, John Wiley, New York–London–Sydney, 1971. MR 0270403 |
Reference:
|
[14] Galambos, J., Seneta, E.: Regularly varying sequences.. Proc. Amer. Math. Soc. 41 (1973), 110–116. Zbl 0247.26002, MR 0323963, 10.1090/S0002-9939-1973-0323963-5 |
Reference:
|
[15] Geluk, J. L.: On slowly varying solutions of the linear second order differential equation.. Publ. Inst. Math. 48 (1990), 52–60. MR 1105139 |
Reference:
|
[16] Geluk, J. L., de Haan, L.: Regular variation, extensions and Tauberian theorems.. CWI Tract 40, Amsterdam, 1987. MR 0906871 |
Reference:
|
[17] de Haan, L.: On regular variation and its application to the weak convergence of sample extremes.. Mathematical Centre Tracts 32, Amsterdam, 1970. MR 0286156 |
Reference:
|
[18] de Haan, L., Ferreira, A.: Extreme value theory. An introduction.. Springer, New York, 2006. MR 2234156 |
Reference:
|
[19] Hammond, C. N. B., Omey, E.: Regular variation and Raabe.. Dostupné z arXiv:1808.01898v1 (2018). |
Reference:
|
[20] Hardy, G. H.: Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond.. Reprint of the 1910 edition, Cambridge Tracts in Mathematics and Mathematical Physics, No. 12. Hafner Publishing Co., New York, 1971. MR 0349922 |
Reference:
|
[21] Jaroš, J., Kusano, T., Tanigawa, T.: Nonoscillatory half-linear differential equations and generalized Karamata functions.. Nonlinear Anal. 64 (2006), 762–787. MR 2197094, 10.1016/j.na.2005.05.045 |
Reference:
|
[22] Jessen, A. H., Mikosch, T.: Regularly varying functions.. Publ. Inst. Math. 80 (2006), 171–192. MR 2281913, 10.2298/PIM0694171J |
Reference:
|
[23] Karamata, J.: Über die Hardy–Littlewoodschen Umkehrungen des Abelschen Stetigkeitssatzes.. Math. Z. 32 (1930), 319–320. MR 1545168, 10.1007/BF01194636 |
Reference:
|
[24] Karamata, J.: Sur un mode de croissance régulière des fonctions.. Mathematica (Cluj) 4 (1930), 38–53. |
Reference:
|
[25] Karamata, J.: Sur un mode de croissance régulière, Théorèmes fondamentaux.. Bull. Soc. Math. France 61 (1933), 55–62. MR 1504998, 10.24033/bsmf.1196 |
Reference:
|
[26] Kohlbecker, E. E.: Weak asymptotic properties of partitions.. Trans. Amer. Math. Soc. 88 (1958), 346–365. MR 0095808, 10.1090/S0002-9947-1958-0095808-9 |
Reference:
|
[27] Korevaar, J.: Tauberian theory. A century of developments.. Springer, Berlin, 2004. MR 2073637 |
Reference:
|
[28] Korevaar, J., van Aardenne-Ehrenfest, T., de Bruijn, N. G.: A note on slowly oscillating functions.. Nieuw Arch. Wiskd. 23 (1949), 77–86. MR 0027812 |
Reference:
|
[29] Landau, E.: Sur les valeurs moyennes de certaines fonctions arithmétiques.. Bull. Acad. R. Belgique (1911), 443–472. |
Reference:
|
[30] Marić, V.: Regular variation and differential equations.. Lecture Notes in Mathematics 1726, Springer, 2000. MR 1753584 |
Reference:
|
[31] Marić, V.: Jovan Karamata (1902–1967).. Mat. Vesnik 54 (2002), 45–51. MR 1958493 |
Reference:
|
[32] Marić, V., Tomić, M.: A classification of solutions of second order linear differential equations by means of regularly varying functions.. Publ. Inst. Math. 48 (1990), 199–207. MR 1105154 |
Reference:
|
[33] Matucci, S., Řehák, P.: Extremal solutions to a system of $n$ nonlinear differential equations and regularly varying functions.. Math. Nachr. 288 (2015), 1413–1430. MR 3377126, 10.1002/mana.201400252 |
Reference:
|
[34] Mijajlović, Ž., Pejović, N., Šegan, S., Damljanović, G.: On asymptotic solutions of Friedmann equations.. Appl. Math. Comput. 219 (2012), 1273–1286. MR 2981320 |
Reference:
|
[35] Nair, J., Wierman, A., Zwart, B.: The fundamentals of heavy tails: Properties, emergence, and estimation.. Cambridge University Press, 2022. MR 4585805 |
Reference:
|
[36] Newman, M. E. J.: Power laws, Pareto distributions and Zipf’s law.. Contemp. Phys. 46 (2005), 323–351. 10.1080/00107510500052444 |
Reference:
|
[37] Niethammer, B., Pego, R. L.: Non-self-similar behavior in the LSW theory of Ostwald ripening.. J. Stat. Phys. 95 (1999), 867–902. MR 1712441, 10.1023/A:1004546215920 |
Reference:
|
[38] Nikolić, A.: Karamata functions and differential equations: achievements from the 20th century.. Historia Math. 45 (2018), 277–299. MR 3832962, 10.1016/j.hm.2017.12.001 |
Reference:
|
[39] Pólya, G.: Über eine neue Weise, bestimmte Integrale in der analytischen Zahlentheorie zu gebrauchen.. Göttinger Nachr. (1917), 149–159. |
Reference:
|
[40] Rădulescu, V.: Singular phenomena in nonlinear elliptic problems: from blow-up boundary solutions to equations with singular nonlinearities.. Handbook of differential equations: stationary partial differential equations, Vol. IV, 485–593, Elsevier, North-Holland, Amsterdam, 2007. MR 2569336 |
Reference:
|
[41] Resnick, S. I.: Extreme values, regular variation and point processes.. Springer, 2008. MR 2364939 |
Reference:
|
[42] Řehák, P.: Nonlinear differential equations in the framework of regular variation.. AMathNet, 2014. Dostupné z: http://users.math.cas.cz/~rehak/ndefrv |
Reference:
|
[43] Řehák, P.: Refined discrete regular variation and its applications.. Math. Meth. Appl. Sci. 42 (2019), 1–12. MR 4037886, 10.1002/mma.5670 |
Reference:
|
[44] Řehák, P.: Kummer test and regular variation.. Monatsh. Math. 192 (2020), 419–426. MR 4098140, 10.1007/s00605-019-01361-y |
Reference:
|
[45] Řehák, P., Vítovec, J.: Regular variation on measure chains.. Nonlinear Anal. 72 (2010), 439–448. MR 2574953, 10.1016/j.na.2009.06.078 |
Reference:
|
[46] Saari, D. G.: Collisions, rings, and other Newtonian $N$-body problems.. CBMS American Mathematical Society, Providence, RI, 2005. MR 2139425 |
Reference:
|
[47] Seneta, E.: Regularly varying functions.. Lecture Notes in Mathematics 508, Springer, Berlin–Heidelberg–New York, 1976. Zbl 0324.26002, MR 0453936 |
Reference:
|
[48] Shaposhnikov, E., Kengo, S.: Asymptotic scale invariance and its consequences.. Phys. Rev. D 99 (2019), 103528. MR 4007075, 10.1103/PhysRevD.99.103528 |
Reference:
|
[49] Tomić, M.: Jovan Karamata (1902–1967). The 100th anniversary of the birthday of Academician Jovan Karamata.. Bull. Cl. Sci. Math. Nat. Sci. Math. 26 (2001), 1–30. MR 1874617 |
Reference:
|
[50] Tong, J. C.: Kummer’s test gives characterizations for convergence or divergence of all positive series.. Amer. Math. Monthly 101 (1994), 450–452. MR 1272945, 10.1080/00029890.1994.11996971 |
Reference:
|
[51] Zygmund, A.: Trigonometric series, Vol. I, II.. Cambridge University Press, Cambridge, 2002. MR 1963498 |
. |