Previous |  Up |  Next

Article

Title: Weighted $w$-core inverses in rings (English)
Author: Wu, Liyun
Author: Zhu, Huihui
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 2
Year: 2023
Pages: 581-602
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a unital $\ast $-ring. For any $a,s,t,v,w\in R$ we define the weighted $w$-core inverse and the weighted dual $s$-core inverse, extending the $w$-core inverse and the dual $s$-core inverse, respectively. An element $a\in R$ has a weighted $w$-core inverse with the weight $v$ if there exists some $x\in R$ such that $awxvx=x$, $xvawa=a$ and $(awx)^*=awx$. Dually, an element $a\in R$ has a weighted dual $s$-core inverse with the weight $t$ if there exists some $y\in R$ such that $ytysa=y$, $asaty=a$ and $(ysa)^*=ysa$. Several characterizations of weighted $w$-core invertible and weighted dual $s$-core invertible elements are given when weights $v$ and $t$ are invertible Hermitian elements. Also, the relations among the weighted $w$-core inverse, the weighted dual $s$-core inverse, the $e$-core inverse, the dual $f$-core inverse, the weighted Moore-Penrose inverse and the $(v,w)$-$(b,c)$-inverse are considered. (English)
Keyword: inverse along an element
Keyword: $\{e, 1, 3\}$-inverse
Keyword: ${\{f, 1, 4}\}$-inverse
Keyword: weighted Moore-Penrose inverse
Keyword: $(v,w)$-$(b,c)$-inverse
Keyword: $w$-core inverse
Keyword: dual $v$-core inverse
MSC: 06A06
MSC: 15A09
MSC: 16W10
idZBL: Zbl 07729525
idMR: MR4586912
DOI: 10.21136/CMJ.2022.0134-22
.
Date available: 2023-05-04T17:50:38Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151675
.
Reference: [1] Baksalary, O. M., Trenkler, G.: Core inverse of matrices.Linear Multilinear Algebra 58 (2010), 681-697. Zbl 1202.15009, MR 2722752, 10.1080/03081080902778222
Reference: [2] Benítez, J., Boasso, E.: The inverse along an element in rings.Electron. J. Linear Algebra 31 (2016), 572-592. Zbl 1351.15004, MR 3578393, 10.13001/1081-3810.3113
Reference: [3] Benítez, J., Boasso, E.: The inverse along an element in rings with an involution, Banach algebras and $C^*$-algebras.Linear Multilinear Algebra 65 (2017), 284-299. Zbl 1361.15004, MR 3577449, 10.1080/03081087.2016.1183559
Reference: [4] Benítez, J., Boasso, E., Jin, H.: On one-sided $(b,c)$-inverses of arbitrary matrices.Electron. J. Linear Algebra 32 (2017), 391-422. Zbl 1386.15016, MR 3761550, 10.13001/1081-3810.3487
Reference: [5] Cline, R. E.: An Application of Representation for the Generalized Inverse of a Matrix.MRC Technical Report 592. University of Wisconsin, Madison (1965).
Reference: [6] Drazin, M. P.: Pseudo-inverses in associative rings and semigroups.Am. Math. Mon. 65 (1958), 506-514. Zbl 0083.02901, MR 0098762, 10.2307/2308576
Reference: [7] Drazin, M. P.: A class of outer generalized inverses.Linear Algebra Appl. 436 (2012), 1909-1923. Zbl 1254.15005, MR 2889966, 10.1016/j.laa.2011.09.004
Reference: [8] Drazin, M. P.: Weighted $(b,c)$-inverses in categories and semigroups.Commun. Algebra 48 (2020), 1423-1438. Zbl 1466.18003, MR 4079318, 10.1080/00927872.2019.1687712
Reference: [9] Ferreyra, D. E., Levis, F. E., Thome, N.: Revisiting the core EP inverse and its extension to rectangular matrices.Quaest. Math. 41 (2018), 265-281. Zbl 1390.15010, MR 3777887, 10.2989/16073606.2017.1377779
Reference: [10] Gao, Y., Chen, J.: Pseudo core inverses in rings with involution.Commun. Algebra 46 (2018), 38-50. Zbl 1392.15005, MR 3764841, 10.1080/00927872.2016.1260729
Reference: [11] Hartwig, R. E., Luh, J.: A note on the group structure of unit regular ring elements.Pac. J. Math. 71 (1977), 449-461. Zbl 0355.16005, MR 0442018, 10.2140/pjm.1977.71.449
Reference: [12] Jacobson, N.: The radical and semi-simplicity for arbitrary rings.Am. J. Math. 67 (1945), 300-320. Zbl 0060.07305, MR 0012271, 10.2307/2371731
Reference: [13] Li, T., Chen, J.: Characterizations of core and dual core inverses in rings with involution.Linear Multilinear Algebra 66 (2018), 717-730. Zbl 1392.15008, MR 3779145, 10.1080/03081087.2017.1320963
Reference: [14] Malika, S. B., Thome, N.: On a new generalized inverse for matrices of an arbitrary index.Appl. Math. Comput. 226 (2014), 575-580. Zbl 1354.15003, MR 3144334, 10.1016/j.amc.2013.10.060
Reference: [15] Mary, X.: On generalized inverses and Green's relations.Linear Algebra Appl. 434 (2011), 1836-1844. Zbl 1219.15007, MR 2775774, 10.1016/j.laa.2010.11.045
Reference: [16] Mary, X., Patrício, P.: The inverse along a lower triangular matrix.Appl. Math. Comput. 219 (2012), 886-891. Zbl 1287.15001, MR 2981280, 10.1016/j.amc.2012.06.060
Reference: [17] Mary, X., Patrício, P.: Generalized inverses modulo $\mathcal H$ in semigroups and rings.Linear Multilinear Algebra 61 (2013), 1130-1135. Zbl 1383.15005, MR 3175351, 10.1080/03081087.2012.731054
Reference: [18] Mosić, D., Deng, C., Ma, H.: On a weighted core inverse in a ring with involution.Commun. Algebra 46 (2018), 2332-2345. Zbl 1427.16034, MR 3778394, 10.1080/00927872.2017.1378895
Reference: [19] Mosić, D., Stanimirović, P. S., Sahoo, J. K., Behera, R., Katsikis, V. N.: One-sided weighted outer inverses of tensors.J. Comput. Appl. Math. 388 (2021), Article ID 113293, 23 pages. Zbl 1458.15010, MR 4185119, 10.1016/j.cam.2020.113293
Reference: [20] Penrose, R.: A generalized inverse for matrices.Proc. Camb. Philos. Soc. 51 (1955), 406-413. Zbl 0065.24603, MR 0069793, 10.1017/S0305004100030401
Reference: [21] Prasad, K. M., Bapat, R. B.: The generalized Moore-Penrose inverse.Linear Algebra Appl. 165 (1992), 59-69. Zbl 0743.15007, MR 1149746, 10.1016/0024-3795(92)90229-4
Reference: [22] Prasad, K. M., Mohana, K. S.: Core-EP inverse.Linear Multilinear Algebra 62 (2014), 792-802. Zbl 1306.15006, MR 1306.15006, 10.1080/03081087.2013.791690
Reference: [23] Rakić, D. S., Dinčić, N. Č., Djordjević, D. S.: Group, Moore-Penrose, core and dual core inverse in rings with involution.Linear Algebra Appl. 463 (2014), 115-133. Zbl 1297.15006, MR 3262392, 10.1016/j.laa.2014.09.003
Reference: [24] Rao, C. R., Mitra, S. K.: Generalized Inverse of a Matrices and Its Application.Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, New York (1971). Zbl 0236.15004, MR 0338013
Reference: [25] Wang, H., Liu, X.: Characterizations of the core inverse and the core partial ordering.Linear Multilinear Algebra 63 (2015), 1829-1836. Zbl 1325.15002, MR 3305012, 10.1080/03081087.2014.975702
Reference: [26] Zhu, H., Wang, Q.-W.: Weighted pseudo core inverses in rings.Linear Multilinear Algebra 68 (2020), 2434-2447. Zbl 1459.16037, MR 4171235, 10.1080/03081087.2019.1585742
Reference: [27] Zhu, H., Wang, Q.-W.: Weighted Moore-Penrose inverses and weighted core inverses in rings with involution.Chin. Ann. Math., Ser. B 42 (2021), 613-624. Zbl 1491.16040, MR 4289196, 10.1007/s11401-021-0282-5
Reference: [28] Zhu, H., Wu, L., Chen, J.: A new class of generalized inverses in semigroups and rings with involution.(to appear) in Comm. Algebra. MR 4561472, 10.1080/00927872.2022.2150771
Reference: [29] Zhu, H., Wu, L., Mosić, D.: One-sided $w$-core inverses in rings with an involution.(to appear) in Linear Multilinear Algebra. MR 4577209, 10.1080/03081087.2022.2035308
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo