Title:
|
Eventually semisimple weak $FI$-extending modules (English) |
Author:
|
Takıl Mutlu, Figen |
Author:
|
Tercan, Adnan |
Author:
|
Yaşar, Ramazan |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
148 |
Issue:
|
2 |
Year:
|
2023 |
Pages:
|
211-222 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this article, we study modules with the weak $FI$-extending property. We prove that if $M$ satisfies weak $FI$-extending, pseudo duo, $C_3$ properties and $M/{\rm Soc} M$ has finite uniform dimension then $M$ decomposes into a direct sum of a semisimple submodule and a submodule of finite uniform dimension. In particular, if $M$ satisfies the weak $FI$-extending, pseudo duo, $C_3$ properties and ascending (or descending) chain condition on essential submodules then $M=M_1\oplus M_2$ for some semisimple submodule $M_1$ and Noetherian (or Artinian, respectively) submodule $M_2$. Moreover, we show that a nonsingular weak $CS$ (or weak $C_{11}^*$, or weak $FI$) module has a direct summand which essentially contains the socle of the module and is a $CS$ (or $C_{11}$, or $FI$-extending, respectively) module. (English) |
Keyword:
|
$CS$-module |
Keyword:
|
weak $CS$-module |
Keyword:
|
uniform dimension |
Keyword:
|
ascending chain on essential submodules |
Keyword:
|
$C_{11}$-module |
Keyword:
|
$FI$-extending |
Keyword:
|
weak $FI$-extending |
MSC:
|
16D50 |
MSC:
|
16D80 |
idZBL:
|
Zbl 07729573 |
idMR:
|
MR4585577 |
DOI:
|
10.21136/MB.2022.0100-21 |
. |
Date available:
|
2023-05-04T17:57:46Z |
Last updated:
|
2023-09-13 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/151685 |
. |
Reference:
|
[1] Anderson, F. W., Fuller, K. R.: Rings and Categories of Modules.Graduate Texts in Mathematics 13. Springer, New York (1992). Zbl 0765.16001, MR 1245487, 10.1007/978-1-4612-4418-9 |
Reference:
|
[2] Armendariz, E. P.: Rings with DCC on essential left ideals.Commun. Algebra 8 (1980), 299-308. Zbl 0444.16015, MR 0558116, 10.1080/00927878008822460 |
Reference:
|
[3] Birkenmeier, G. F., Călugăreanu, G., Fuchs, L., Goeters, H. P.: The fully invariant extending property for abelian groups.Commun. Algebra 29 (2001), 673-685. Zbl 0992.20039, MR 1841990, 10.1081/AGB-100001532 |
Reference:
|
[4] Birkenmeier, G. F., Müller, B. J., Rizvi, S. T.: Modules in which every fully invariant submodule is essential in a direct summand.Commun. Algebra 30 (2002), 1395-1415. Zbl 1006.16010, MR 1892606, 10.1080/00927870209342387 |
Reference:
|
[5] Birkenmeier, G. F., Park, J. K., Rizvi, S. T.: Extensions of Rings and Modules.Birkhäuser, New York (2013). Zbl 1291.16001, MR 3099829, 10.1007/978-0-387-92716-9 |
Reference:
|
[6] Camillo, V., Yousif, M. F.: CS-modules with ACC or DCC on essential submodules.Commun. Algebra 19 (1991), 655-662. Zbl 0718.16006, MR 1100368, 10.1080/00927879108824160 |
Reference:
|
[7] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules.Pitman Research Notes in Mathematics Series 313. Longman, Harlow (1994),\99999DOI99999 10.1201/9780203756331 . Zbl 0841.16001, MR 1312366 |
Reference:
|
[8] Goodearl, K. R.: Singular torsion and the splitting properties.Mem. Am. Math. Soc. 124 (1972), 89 pages. Zbl 0242.16018, MR 0340335, 10.1090/memo/0124 |
Reference:
|
[9] Goodearl, K. R.: Ring Theory: Nonsingular Rings and Modules.Pure and Applied Mathematics, Marcel Dekker 33. Marcel Dekker, New York (1976). Zbl 0336.16001, MR 0429962 |
Reference:
|
[10] Kaplansky, I.: Infinite Abelian Groups.University of Michigan Press, Ann Arbor (1969). Zbl 0194.04402, MR 0233887 |
Reference:
|
[11] Smith, P. F.: CS-modules and weak CS-modules.Non-Commutative Ring Theory Lecture Notes in Mathematics 1448. Springer, Berlin (1990), 99-115. Zbl 0714.16007, MR 1084626, 10.1007/BFb0091255 |
Reference:
|
[12] Smith, P. F.: Modules with many direct summands.Osaka J. Math. 27 (1990), 253-264. Zbl 0703.16007, MR 1066623 |
Reference:
|
[13] Smith, P. F., Tercan, A.: Generalizations of CS-modules.Commun. Algebra 21 (1993), 1809-1847. Zbl 0779.16002, MR 1215548, 10.1080/00927879308824655 |
Reference:
|
[14] Smith, P. F., Tercan, A.: Direct summands of modules which satisfy $(C_{11})$.Algebra Colloq. 11 (2004), 231-237. Zbl 1075.16002, MR 2058772 |
Reference:
|
[15] Tercan, A.: On certain CS-rings.Commun. Algebra 23 (1995), 405-419. Zbl 0820.16001, MR 1311796, 10.1080/00927879508825228 |
Reference:
|
[16] Tercan, A.: Weak $(C_{11}^+)$ modules with ACC or DCC on essential submodules.Taiwanese J. Math. 5 (2001), 731-738. Zbl 1015.16001, MR 1870043, 10.11650/twjm/1500574991 |
Reference:
|
[17] Tercan, A.: Eventually weak $(C_{11})$ modules and matrix $(C_{11})$ rings.Southeast Asian Bull. Math. 27 (2003), 729-737. Zbl 1063.16006, MR 2045380 |
Reference:
|
[18] Tercan, A., Yaşar, R.: Weak $FI$-extending modules with ACC or DCC on essential submodules.Kyungpook J. Math. 61 (2021), 239-248. Zbl 07445263, MR 4284189, 10.5666/KMJ.2021.61.2.239 |
Reference:
|
[19] Tercan, A., Yücel, C. C.: Module Theory, Extending Modules and Generalizations.Frontiers in Mathematics. Birkhäuser, Basel (2016). Zbl 1368.16002, MR 3468915, 10.1007/978-3-0348-0952-8 |
Reference:
|
[20] Yaşar, R.: Modules in which semisimple fully invariant submodules are essential in summands.Turk. J. Math. 43 (2019), 2327-2336. Zbl 1431.16006, MR 4020392, 10.3906/mat-1906-36 |
. |