Previous |  Up |  Next

Article

Title: On units of some fields of the form $\mathbb {Q}\big (\sqrt 2, \sqrt {p}, \sqrt {q}, \sqrt {-l}\big )$ (English)
Author: Chems-Eddin, Mohamed Mahmoud
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 148
Issue: 2
Year: 2023
Pages: 237-242
Summary lang: English
.
Category: math
.
Summary: Let $p\equiv 1\pmod {8}$ and $q\equiv 3\pmod 8$ be two prime integers and let $\ell \not \in \{-1, p, q\}$ be a positive odd square-free integer. Assuming that the fundamental unit of $\mathbb {Q}\big (\sqrt {2p}\big ) $ has a negative norm, we investigate the unit group of the fields $\mathbb {Q}\big (\sqrt 2, \sqrt {p}, \sqrt {q}, \sqrt {-\ell } \big )$. (English)
Keyword: multiquadratic number field
Keyword: unit group
Keyword: fundamental system of units
MSC: 11R04
MSC: 11R27
MSC: 11R29
MSC: 11R37
idZBL: Zbl 07729575
idMR: MR4585579
DOI: 10.21136/MB.2022.0128-21
.
Date available: 2023-05-04T17:59:21Z
Last updated: 2023-09-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151687
.
Reference: [1] Azizi, A.: Unités de certains corps de nombres imaginaires et abéliens sur $\mathbb{Q}$.Ann. Sci. Math. Qué. 23 (1999), 15-21 French. Zbl 1041.11072, MR 1721726
Reference: [2] Chems-Eddin, M. M.: Arithmetic of some real triquadratic fields: Units and 2-class groups.Available at https://arxiv.org/abs/2108.04171v1 (2021), 32 pages.
Reference: [3] Chems-Eddin, M. M.: Unit groups of some multiquadratic number fields and 2-class groups.Period. Math. Hung. 84 (2022), 235-249. MR 4423478, 10.1007/s10998-021-00402-0
Reference: [4] Chems-Eddin, M. M., Azizi, A., Zekhnini, A.: Unit groups and Iwasawa lambda invariants of some multiquadratic number fields.Bol. Soc. Mat. Mex., III. Ser. 27 (2021), Article ID 24, 16 pages. Zbl 07342807, MR 4220815, 10.1007/s40590-021-00329-z
Reference: [5] Chems-Eddin, M. M., Zekhnini, A., Azizi, A.: Units and 2-class field towers of some multiquadratic number fields.Turk. J. Math. 44 (2020), 1466-1483. Zbl 1455.11140, MR 4122918, 10.3906/mat-2003-117
Reference: [6] Kubota, T.: Über den bizyklischen biquadratischen Zahlkörper.Nagoya Math. J. 10 (1956), 65-85 German. Zbl 0074.03001, MR 0083009, 10.1017/S0027763000000088
Reference: [7] Varmon, J.: Über Abelsche Körper, deren alle Gruppeninvarianten aus einer Primzahl bestehen, und über Abelsche Körper als Kreiskörper.Hakan Ohlssons Boktryckeri, Lund (1925), German \99999JFM99999 51.0123.05.
Reference: [8] Wada, H.: On the class number and the unit group of certain algebraic number fields.J. Fac. Sci, Univ. Tokyo, Sect. I 13 (1966), 201-209 \99999MR99999 0214565 . Zbl 0158.30103, MR 0214565
.

Files

Files Size Format View
MathBohem_148-2023-2_7.pdf 197.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo