[1] Avila, J. P. J., Donha, D. C., Amowski, J. C. Ad:
Experimental model identification of open-frame underwater vehicles. Ocean Engrg. 60 (2013), 81-94.
DOI
[2] Behtash, S.:
Robust output tracking for non-linear systems. Int. J. Control 51 (1990), 6, 1381-1407.
DOI |
MR 1061713
[3] Chen, H., Chen, Y., Wang, M.:
Trajectory tracking for underactuated surface vessels with time delays and unknown control directions. IET Control Theory Appl. 16 (2022), 6, 587-599.
DOI
[4] Chen, W., Wei, Y., Zeng, J., Hu, J., Wang, Z.: Adaptive backstepping control of underactuated AUV based on disturbance observer. J. Central South University 48 (2017), 1, 69-76.
[5] Chu, Z., Zhu, D., Yang, S. X., E., G., Jan:
Adaptive Sliding mode control for depth trajectory tracking of remotely operated vehicle with thruster nonlinearity. J. Navigation 70 (2017), 1, 149-164.
DOI
[6] Druzhinina, O., Sedova, N.:
Optimization Problems in tracking control design for an underactuated ship with feedback delay, state and control constraints. Optim. Appl. 12422 (2020), 71-85.
DOI |
MR 4381485
[7] Du, J., Li, J.:
Finite-time prescribed performance control for the three-dimension trajectory tracking of underactuated autonomous underwater vehicles. Control Theory Appl. 39 (2022), 383-392.
DOI
[8] Feng, Z., Lam, J., Yang, G.-H.:
Optimal partitioning method for stability analysis of continuous/discrete delay systems. Int. J. Robust Nonlinear Control 25 (2015), 4, 559-574.
DOI |
MR 3303356
[9] Jia, Z., Hu, Z., Zhang, W.:
Adaptive output-feedback control with prescribed performance for trajectory tracking of underactuated surface vessels. ISA Trans. 95 (2019), 18-56.
DOI
[10] Jian, X., Man, W., Lei, Q.:
Dynamical sliding mode control for the trajectory tracking of underactuated unmanned underwater vehicles. Ocean Engrg. 105 (2015), 54-63.
DOI
[11] Lakhekar, G. V., Waghmare, L. M.:
Adaptive fuzzy exponential terminal sliding mode controller design for nonlinear trajectory tracking control of autonomous underwater vehicle. Int. J. Dynamics Control 6.4 (2018), 1690-1705.
DOI |
MR 3870196
[12] Liao, Z. Y., Dai, Y. S., Li, L. G., Jin, J. C., F., Shao: Overview of unmanned surface vehicle motion control methods. Marine Sci. 44 (2020), 3, 153-162.
[13] Liao, Y. L., Zhang, M. J., Wan, L., Li, Y.:
Trajectory tracking control for underactuated unmanned surface vehicles with dynamic uncertainties. J. Central South Univ. 23 (2016), 2, 370-378.
DOI
[14] Liu, Z.:
Practical backstepping control for underactuated ship path following associated with disturbances. IET Intell. Transport Systems 13 (2018), 5, 834-840.
DOI
[15] Manley, J. E.: Unmanned surface vehicles, 15 years of development. Oceans (2008), Supplement, 1-4.
[16] Marco, B., Massimo, C., Lionel, L.:
Path-following algorithms and experiments for an autonomous surface vehicle. IFAC Proc. Vol. 40 (2007), 17, 81-86.
DOI
[17] Min, Y., Liu, Y.:
Barbalat Lemma and its application in analysis of system stability. J. Shandong Univ., Engrg. Sci. (2007), 51-55+114.
DOI
[18] Pastore, T., Djapic, V.:
Improving autonomy and control of autonomous surface vehicles in port protection and mine countermeasure scenarios. J. Field Robotics 27 (2010), 6, 903-914.
DOI
[19] Qijia, Y.:
Robust fixed-time trajectory tracking control of marine surface vessel with feedforward disturbance compensation. Int. J. Systems Sci. 53 (2022), 4, 726-742.
DOI |
MR 4385666
[20] Qiu, B., Wang, G., Fan, Y., Mu, D., Sun, X.:
Adaptive sliding mode trajectory tracking control for unmanned surface vehicle with modeling uncertainties and input saturation. Appl. Sci. 9 (2019), 6, 1240.
DOI
[21] Qudrat, K., Rini, A.:
Neuro-adaptive dynamic integral sliding mode control design with output differentiation observer for uncertain higher order MIMO nonlinear systems. Neurocomputing 226 (2017), 126-134.
DOI
[22] Ramakrishnan, K., Ray, G.:
Delay-range-dependent stability criterion for interval time-delay systems with nonlinear perturbations. International Journal of Automation and Computing, vol.8.1, (2011), 141-146.
DOI 10.1007/s11633-010-0566-9 |
MR 2913561
[23] Wang, F., Chao, Z., Huang, L.:
Trajectory tracking control of robot manipulator based on RBF neural network and fuzzy sliding mode. Cluster Comput. 22 (2019), 3, 5799-5809.
DOI
[24] Xu, D., Liu, Z., Zhou, X., Yang, L., Huang, L.:
Trajectory tracking of underactuated unmanned surface vessels: non-singular terminal sliding control with nonlinear disturbance observer. Appl. Sci. 12 (2022), 6, 3004.
DOI
[25] Yu, L., Guoqing, Z., Lei, Q., Weidong, Z.:
Adaptive output-feedback formation control for underactuated surface vessels. Int. J. Control 93 (2020), 3, 400-409.
DOI |
MR 4070903
[26] Zhou, J., Xinyi, Z., Zhiguang, F., Di, W.:
Trajectory tracking sliding mode control for underactuated autonomous underwater vehicles with time delays. Int. J. Advanced Robotic Systems 17 (2020), 3, 1729881420916276.
DOI
[27] Zhou, J., Zhao, X., Chen, T., Yan, Z., Yang, Z.:
Trajectory tracking control of an underactuated AUV based on backstepping sliding mode with state prediction. IEEE Access 7 (2019), 181983-181993.
DOI
[28] Zou, L., Liu, H., Tian, X.:
Robust neural network trajectory-tracking control of underactuated surface vehicles considering uncertainties and unmeasurable velocities. IEEE Access9 (2021), 117629-117638.
DOI