Title: | Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ (English) |
Author: | Wang, Yu |
Author: | Li, Xiaoming |
Language: | English |
Journal: | Czechoslovak Mathematical Journal |
ISSN: | 0011-4642 (print) |
ISSN: | 1572-9141 (online) |
Volume: | 73 |
Issue: | 3 |
Year: | 2023 |
Pages: | 715-731 |
Summary lang: | English |
. | |
Category: | math |
. | |
Summary: | Let $U$ be the two-parameter quantized enveloping algebra $U_{r,s}(\mathfrak {sl}_2)$ and $F(U)$ the locally finite subalgebra of $U$ under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of $F(U)$ in the case when $rs^{-1}$ is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of $U$ by generators. (English) |
Keyword: | two-parameter quantum group |
Keyword: | locally finite subalgebra |
Keyword: | adjoint action |
Keyword: | annihilator ideal |
MSC: | 16D25 |
MSC: | 20G42 |
idZBL: | Zbl 07729534 |
idMR: | MR4632854 |
DOI: | 10.21136/CMJ.2023.0193-22 |
. | |
Date available: | 2023-08-11T14:21:33Z |
Last updated: | 2023-09-13 |
Stable URL: | http://hdl.handle.net/10338.dmlcz/151771 |
. | |
Reference: | [1] Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras. Vol. 1. Techniques of Representation Theory.London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). Zbl 1092.16001, MR 2197389, 10.1017/CBO9780511614309 |
Reference: | [2] Auslander, M., Reiten, I., Smalø, S. O.: Representation Theory of Artin Algebras.Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). Zbl 0834.16001, MR 1314422, 10.1017/CBO9780511623608 |
Reference: | [3] Benkart, G., Kang, S.-J., Lee, K.-H.: On the centre of two-parameter quantum groups.Proc. R. Soc. Edinb., Sect. A, Math. 136 (2006), 445-472. Zbl 1106.17013, MR 2227803, 10.1017/S0308210500005011 |
Reference: | [4] Benkart, G., Witherspoon, S.: Representations of two-parameter quantum groups and Schur-Weyl duality.Hopf Algebras Lecture Notes in Pure and Applied Mathematics 237. Marcel Dekker, New York (2004), 65-92. Zbl 1048.16021, MR 2051731 |
Reference: | [5] Benkart, G., Witherspoon, S.: Two-parameter quantum groups and Drinfel'd doubles.Algebr. Represent. Theory 7 (2004), 261-286. Zbl 1113.16041, MR 2070408, 10.1023/B:ALGE.0000031151.86090.2e |
Reference: | [6] Burdík, Č., Navrátil, O., Pošta, S.: The adjoint representation of quantum algebra $U_q( sl(2))$.J. Nonlinear Math. Phys. 16 (2009), 63-75. Zbl 1166.81337, MR 2571814, 10.1142/S1402925109000066 |
Reference: | [7] Catoiu, S.: Ideals of the enveloping algebra $U( sl_2)$.J. Algebra 202 (1998), 142-177. Zbl 0970.17009, MR 1614186, 10.1006/jabr.1997.7284 |
Reference: | [8] Joseph, A.: Quantum Groups and Their Primitive Ideals.Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. 29. Springer, Berlin (1995). Zbl 0808.17004, MR 1315966, 10.1007/978-3-642-78400-2 |
Reference: | [9] Joseph, A., Letzter, G.: Local finiteness of the adjoint action for quantized enveloping algebras.J. Algebra 153 (1992), 289-318. Zbl 0779.17012, MR 1198203, 10.1016/0021-8693(92)90157-H |
Reference: | [10] Joseph, A., Letzter, G.: Separation of variables for quantized enveloping algebras.Am. J. Math. 116 (1994), 127-177. Zbl 0811.17007, MR 1262429, 10.2307/2374984 |
Reference: | [11] Kassel, C.: Quantum Groups.Graduate Texts in Mathematics 155. Springer, New York (1995). Zbl 0808.17003, MR 1321145, 10.1007/978-1-4612-0783-2 |
Reference: | [12] Kolb, S., Lorenz, M., Nguyen, B., Yammine, R.: On the adjoint representation of a Hopf algebra.Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 1092-1099. Zbl 1462.16035, MR 4197323, 10.1017/S0013091520000358 |
Reference: | [13] Li, L., Zhang, P.: Quantum adjoint action for $\mathcal{U}_q( sl(2))$.Algebra Colloq. 7 (2000), 369-379. Zbl 0985.16024, MR 1805955 |
Reference: | [14] Li, L., Zhang, P.: Weight property for ideals of $\mathcal{U}_q( sl(2))$.Commun. Algebra 29 (2001), 4853-4870. Zbl 0989.17008, MR 1856919, 10.1081/AGB-100106790 |
Reference: | [15] Montgomery, S.: Hopf Algebras and Their Actions on Rings.Regional Conference Series in Mathematics 82. AMS, Providence (1993). Zbl 0793.16029, MR 1243637, 10.1090/cbms/082 |
Reference: | [16] Passman, D. S.: The Algebraic Structure of Group Rings.Pure and Applied Mathematics. John Wiley & Sons, New York (1977). Zbl 0368.16003, MR 0470211 |
Reference: | [17] Takeuchi, M.: A two-parameter quantization of $GL(n)$.Proc. Japan Acad., Ser. A 66 (1990), 112-114. Zbl 0723.17012, MR 1065785, 10.3792/pjaa.66.112 |
Reference: | [18] Wang, Y.: Annihilator ideals of indecomposable modules of finite-dimensional pointed Hopf algebras of rank one.Available at https://arxiv.org/abs/2205.14603v2 (2022), 21 pages. |
Reference: | [19] Wang, Y.: Classification of ideals of 8-dimensional Radford Hopf algebra.Czech. Math. J. 72 (2022), 1019-1028. Zbl 7655778, MR 4517591, 10.21136/CMJ.2022.0313-21 |
Reference: | [20] Wang, Y., Wang, Z., Li, L.: Ideals of finite-dimensional pointed Hopf algebras of rank one.Algebra Colloq. 28 (2021), 351-360. Zbl 1475.16035, MR 4256338, 10.1142/S1005386721000274 |
Reference: | [21] Wang, Y., Zheng, Y., Li, L.: On the ideals of the Radford Hopf algebras.Commun. Algebra 49 (2021), 4109-4122. Zbl 1491.16034, MR 4296825, 10.1080/00927872.2021.1914073 |
. |
Fulltext not available (moving wall 24 months)