Previous |  Up |  Next

Article

Title: Weak Serrin-type finite time blowup and global strong solutions for three-dimensional density-dependent heat conducting magnetohydrodynamic equations with vacuum (English)
Author: Li, Huanyuan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 5
Year: 2023
Pages: 593-621
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with a Cauchy problem for the three-dimensional (3D) nonhomogeneous incompressible heat conducting magnetohydrodynamic (MHD) equations in the whole space. First of all, we establish a weak Serrin-type blowup criterion for strong solutions. It is shown that for the Cauchy problem of the 3D nonhomogeneous heat conducting MHD equations, the strong solution exists globally if the velocity satisfies the weak Serrin's condition. In particular, this criterion is independent of the absolute temperature and magnetic field. Then as an immediate application, we prove the global existence and uniqueness of strong solution to the 3D nonhomogeneous heat conducting MHD equations under a smallness condition on the initial data. In addition, the initial vacuum is allowed. (English)
Keyword: heat conducting MHD
Keyword: Cauchy problem
Keyword: blowup criterion
Keyword: global strong solution
Keyword: vacuum
MSC: 35Q35
MSC: 76W05
DOI: 10.21136/AM.2022.0141-22
.
Date available: 2023-10-05T15:10:27Z
Last updated: 2023-10-09
Stable URL: http://hdl.handle.net/10338.dmlcz/151835
.
Reference: [1] Bie, Q., Wang, Q., Yao, Z.: Global well-posedness of the 3D incompressible MHD equations with variable density.Nonlinear Anal., Real World Appl. 47 (2019), 85-105. Zbl 1411.35013, MR 3873567, 10.1016/j.nonrwa.2018.10.008
Reference: [2] Chen, F., Guo, B., Zhai, X.: Global solution to the 3-D inhomogeneous incompressible MHD system with discontinuous density.Kinet. Relat. Models 12 (2019), 37-58. Zbl 1410.35110, MR 3835531, 10.3934/krm.2019002
Reference: [3] Chen, F., Li, Y., Xu, H.: Global solution to the 3D nonhomogeneous incompressible MHD equations with some large initial data.Discrete Contin. Dyn. Syst. 36 (2016), 2945-2967. Zbl 1332.35282, MR 3485426, 10.3934/dcds.2016.36.2945
Reference: [4] Chen, Q., Tan, Z., Wang, Y.: Strong solutions to the incompressible magnetohydrodynamic equations.Math. Methods Appl. Sci. 34 (2011), 94-107. Zbl 1254.35187, MR 2778978, 10.1002/mma.1338
Reference: [5] Cho, Y., Kim, H.: Existence results for viscous polytropic fluids with vacuum.J. Differ. Equations 228 (2006), 377-411. Zbl 1139.35384, MR 2289539, 10.1016/j.jde.2006.05.001
Reference: [6] Davidson, P. A.: Introduction to Magnetohydrodynamics.Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2017). Zbl 1376.76001, MR 3699477, 10.1017/9781316672853
Reference: [7] Desjardins, B., Bris, C. Le: Remarks on a nonhomogeneous model of magnetohydrodynamics.Differ. Integral Equ. 11 (1998), 377-394. Zbl 1067.76097, MR 1745545
Reference: [8] Feireisl, E.: Dynamics of Viscous Compressible Fluids.Oxford Lecture Series in Mathematics and Its Applications 26. Oxford University Press, Oxford (2004). Zbl 1080.76001, MR 2040667, 10.1093/acprof:oso/9780198528388.001.0001
Reference: [9] Gerbeau, J.-F., Bris, C. Le: Existence of solution for a density-dependent magnetohydrodynamic equation.Adv. Differ. Equ. 2 (1997), 427-452. Zbl 1023.35524, MR 1441851
Reference: [10] Giga, M.-H., Giga, Y., Saal, J.: Nonlinear Partial Differential Equations: Asymptotic Behavior of Solutions and Self-Similar Solutions.Progress in Nonlinear Differential Equations and their Applications 79. Birkhäuser, Basel (2010). Zbl 1215.35001, MR 2656972, 10.1007/978-0-8176-4651-6
Reference: [11] Grafakos, L.: Classical Fourier Analysis.Graduate Texts in Mathematics 249. Springer, New York (2008). Zbl 1220.42001, MR 2445437, 10.1007/978-0-387-09432-8
Reference: [12] He, C., Li, J., Lü, B.: Global well-posedness and exponential stability of 3D Navier-Stokes equations with density-dependent viscosity and vacuum in unbounded domains.Arch. Ration. Mech. Anal. 239 (2021), 1809-1835. Zbl 1462.35243, MR 4215202, 10.1007/s00205-020-01604-5
Reference: [13] He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations.J. Differ. Equations 213 (2005), 235-254. Zbl 1072.35154, MR 2142366, 10.1016/j.jde.2004.07.002
Reference: [14] Huang, X., Wang, Y.: Global strong solution to the 2D nonhomogeneous incompressible MHD system.J. Differ. Equations 254 (2013), 511-527. Zbl 1253.35121, MR 2990041, 10.1016/j.jde.2012.08.029
Reference: [15] Kim, H.: A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations.SIAM J. Math. Anal. 37 (2006), 1417-1434. Zbl 1141.35432, MR 2215270, 10.1137/S0036141004442197
Reference: [16] Kozono, H., Yamazaki, M.: Uniqueness criterion of weak solutions to the stationary Navier-Stokes equations in exterior domains.Nonlinear Anal., Theory Methods Appl. 38 (1999), 959-970. Zbl 0934.35123, MR 1716426, 10.1016/S0362-546X(98)00145-X
Reference: [17] Lions, P.-L.: Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models.Oxford Lecture Series in Mathematics and Its Applications 3. Oxford University Press, Oxford (1996). Zbl 0866.76002, MR 1422251
Reference: [18] Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach.Birkhäuser Advanced Texts. Birkhäuser, Basel (2001). Zbl 0983.35004, MR 1928881, 10.1007/978-3-0348-8255-2
Reference: [19] Wang, Y.: Weak Serrin-type blowup criterion for three-dimensional nonhomogeneous viscous incompressible heat conducting flows.Physica D 402 (2020), Article ID 132203, 8 pages. Zbl 1453.76039, MR 4046368, 10.1016/j.physd.2019.132203
Reference: [20] Wang, W., Yu, H., Zhang, P.: Global strong solutions for 3D viscous incompressible heat conducting Navier-Stokes flows with the general external force.Math. Methods Appl. Sci. 41 (2018), 4589-4601. Zbl 1397.35231, MR 3828345, 10.1002/mma.4915
Reference: [21] Wu, H.: Strong solutions to the incompressible magnetohydrodynamic equations with vacuum.Comput. Math. Appl. 61 (2011), 2742-2753. Zbl 1221.76253, MR 2795397, 10.1016/j.camwa.2011.03.033
Reference: [22] Zhong, X.: Global strong solution for 3D viscous incompressible heat conducting Navier-Stokes flows with non-negative density.J. Differ. Equations 263 (2017), 4978-4996. Zbl 1377.35227, MR 3680944, 10.1016/j.jde.2017.06.004
Reference: [23] Zhong, X.: Global strong solutions for 3D viscous incompressible heat conducting magnetohydrodynamic flows with non-negative density.J. Math. Anal. Appl. 446 (2017), 707-729. Zbl 1352.35133, MR 3554752, 10.1016/j.jmaa.2016.09.012
Reference: [24] Zhong, X.: Global well-posedness to the 2D Cauchy problem of nonhomogeneous heat conducting magnetohydrodynamic equations with large initial data and vacuum.Calc. Var. Partial Differ. Equ. 60 (2021), Article ID 64, 24 pages. Zbl 1461.76571, MR 4239818, 10.1007/s00526-021-01957-z
Reference: [25] Zhong, X.: Global existence and large time behavior of strong solutions to the nonhomogeneous heat conducting magnetohydrodynamic equations with large initial data and vacuum.Anal. Appl., Singap. 20 (2022), 193-219. Zbl 1490.76251, MR 4386926, 10.1142/S0219530521500056
Reference: [26] Zhong, X.: Global well-posedness and exponential decay of 2D nonhomogeneous Navier-Stokes and magnetohydrodynamic equations with density-dependent viscosity and vacuum.J. Geom. Anal. 32 (2022), Article ID 19, 26 pages. Zbl 1480.76101, MR 4349463, 10.1007/s12220-021-00754-6
Reference: [27] Zhou, L.: Serrin-type blowup criterion of three-dimensional nonhomogeneous heat conducting magnetohydrodynamic flows with vacuum.Electron. J. Qual. Theory Differ. Equ. 2019 (2019), Article ID 81, 16 pages. Zbl 1449.35358, MR 4028913, 10.14232/ejqtde.2019.1.81
Reference: [28] Zhu, M., Ou, M.: Global strong solutions to the 3D incompressible heat-conducting magnetohydrodynamic flows.Math. Phys. Anal. Geom. 22 (2019), Article ID 8, 17 pages. Zbl 1416.35224, MR 3918713, 10.1007/s11040-019-9306-8
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo