Previous |  Up |  Next

Article

Title: On extensions of families of operators (English)
Author: Lihvoinen, Oleg
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 2
Year: 2023
Pages: 227-252
Summary lang: English
.
Category: math
.
Summary: The strong closure of feasible states of families of operators is studied. The results are obtained for self-adjoint operators in reflexive Banach spaces and for more concrete case - families of elliptic systems encountered in the optimal layout of $r$ materials. The results show when it is possible to parametrize the strong closure by the same type of operators. The results for systems of elliptic operators for the case when number of unknown functions $m$ is less than the dimension $n$ of the reference domain are well-known, but we present several different approaches in this paper to prove that parametrization of the strong closure of feasible states can be done by convexification. Also, a new approach is offered to prove result for the strong closure of cogradients. There are given counterexamples for the case $m\geq n$ when the parametrization by convexification is not possible. This extends the known result for the case $m=n=2$. (English)
Keyword: strong closure
Keyword: feasible state
Keyword: operator
Keyword: elliptic system
MSC: 49J20
MSC: 49J45
idZBL: Zbl 07790593
idMR: MR4659001
DOI: 10.14712/1213-7243.2023.023
.
Date available: 2023-12-13T13:43:27Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151859
.
Reference: [1] Aubin J.-P., Ekeland I.: Applied Nonlinear Analysis.Pure Appl. Math. (N. Y.), Wiley-Intersci. Publ., John Wiley, New York, 1984. Zbl 1115.47049, MR 0749753
Reference: [2] Beran M. J.: Field fluctuations in a two-phase random medium.J. Math. Phys. 21 (1980), 2583–2585. 10.1063/1.524364
Reference: [3] Briane M., Nesi V.: Is it wise to keep laminating?.ESAIM Control Optim. Calc. Var. 10 (2004), no. 4, 452–477. MR 2111075, 10.1051/cocv:2004015
Reference: [4] Dunford N., Schwartz J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics, 7, Interscience Publishers, New York; Interscience Publishers Ltd., London, 1958. MR 0117523
Reference: [5] Dvořák J., Haslinger J., Miettinen M.: On the problem of optimal material distribution.Report University of Jyväskylä 7 (1996).
Reference: [6] Ekeland I., Temam R.: Convex Analysis and Variational Problems.Studies in Mathematics and Its Applications, 1, North-Holland Publishing Co., Amsterdam, American Elsevier Publishing Co., New York, 1976. MR 0463994
Reference: [7] Gamkrelidze R. V.: Fundamentals of Optimal Control.Izdat. Tbilis. Univ., Tbilisi, 1975 (Russian). MR 0686791
Reference: [8] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems. I.Comm. Pure Appl. Math. 39 (1986), no. 1, 113–137. MR 0820342, 10.1002/cpa.3160390107
Reference: [9] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems. II.Comm. Pure Appl. Math. 39 (1986), no. 2, 139–182. MR 0820067, 10.1002/cpa.3160390202
Reference: [10] Kohn R. V., Strang G.: Optimal design and relaxation of variational problems. III.Comm. Pure Appl. Math. 39 (1986), no. 3, 353–377. MR 0829845, 10.1002/cpa.3160390305
Reference: [11] Lur'e K. A.: Optimal Control in Problems of Mathematical Physics.Izdat. Nauka, Moscow, 1975 (Russian). MR 0487655
Reference: [12] Murat F.: Contre-exemples pour divers problèmes o\`u le contrôle intervient dans les coefficients.Ann. Mat. Pura Appl. (4) 112 (1977), 49–68. MR 0438205
Reference: [13] Murat F.: Compacité par compensation.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 5 (1978), no. 3, 489–507 (French). MR 0506997
Reference: [14] Nečas J.: Les méthodes directes en théorie des équations elliptiques.Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 (French). MR 0227584
Reference: [15] Olejnik O. A., Yosifyan G. A., Shamaev A. S.: Mathematical Problems in the Theory of Strongly Nonhomogeneous Elastic Media.Moscow University Press, Moscow, 1990 (Russian). MR 1115306
Reference: [16] Raĭtums U. "E.: The passage to the convex hull of a set of admissible operators in optimal control problems.Dokl. Akad. Nauk SSSR 285 (1985), no. 2, 289–292 (Russian). MR 0820853
Reference: [17] Raitums U.: The maximum principle and the convexification of optimal control problems.Control Cybernet. 23 (1994), no. 4, 745–760. MR 1303381
Reference: [18] Raitums U.: Lecture Notes on $G$-convergence, Convexification and Optimal Control Problems for Elliptic Equations.Lecture Notes, 39, University of Jyväskylä, Department of Mathematics, Jyväskylä, 1997.
Reference: [19] Raitums U.: On the projections of multivalued maps.J. Optim. Theory Appl. 92 (1997), no. 3, 633–660. MR 1432612, 10.1023/A:1022611608062
Reference: [20] Raitums U.: On the strong closure of sets of feasible states and cogradients for elliptic equations.Dynam. Contin. Discrete Impuls. Systems 7 (2000), no. 3, 335–350. MR 1774949
Reference: [21] Tartar L.: Problèmes de contrôle des coefficientes dans les èquations aux dérivèes partielles.Control Theory, Numerical Methods and Computer Systems Modeling, Internat. Sympos., IRIA LABORIA, Rocquencourt, 1974, Lecture Notes in Econom. and Math. Systems, 107, Springer, Berlin, 1975, pages 420–426 (French). MR 0428166
Reference: [22] Tartar L.: Homogénéisation en hydrodynamique.Singular Perturbations and Boundary Layer Theory, Proc. Conf., École Centrale, Lyon, 1976, Lecture Notes in Math., 594, Springer, Berlin, 1977, pages 474–481 (French). MR 0471604
Reference: [23] Tartar L.: Remarks on optimal design problems.Calculus of Variations, Homogenization and Continuum Mechanics, Marseille, 1993, Ser. Adv. Math. Appl. Sci., 18, World Scientific Publishing Co., River Edge, 1994, pages 279–296. MR 1428706
Reference: [24] Vainikko G., Kunisch K.: Identifiability of the transmissivity coefficient in an elliptic boundary value problem.Z. Anal. Anwendungen 12 (1993), no. 2, 327–341. MR 1245924, 10.4171/ZAA/562
Reference: [25] Warga J.: Optimal Control of Differential and Functional Equations.Academic Press, New York, 1972. Zbl 0253.49001, MR 0372708
Reference: [26] Zaytsev O.: On closure of the pre-images of families of mappings.Comment. Math. Univ. Carolin. 39 (1998), no. 3, 491–501. MR 1666766
Reference: [27] Zaytsev O.: On strong closure of sets of feasible states associated with families of elliptic operators.Z. Anal. Anwendungen 17 (1998), no. 3, 565–575. MR 1649372, 10.4171/ZAA/839
Reference: [28] Zhikov V. V.: Estimates for an averaged matrix and an averaged tensor.Uspekhi Mat. Nauk 46 (1991), no. 3, 49–109, 239 (Russian); translation in Russian Math. Surveys 46 (1991), no. 3, 65–136. MR 1134090
Reference: [29] Zhikov V. V., Kozlov S. M., Oleĭnik O. A.: Averaging of Differential Operators.Nauka, Moscow, 1993 (Russian). MR 1318242
Reference: [30] Zhikov V. V., Kozlov S. M., Oleĭnik O. A., Ngoan H. T.: Averaging and $G$-convergence of differential operators.Uspekhi Mat. Nauk 34 (1979), no. 5(209), 65–133, 256 (Russian). MR 0562800
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo