Previous |  Up |  Next

Article

Title: Isomorphic properties in spaces of compact operators (English)
Author: Ghenciu, Ioana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 64
Issue: 2
Year: 2023
Pages: 175-184
Summary lang: English
.
Category: math
.
Summary: We introduce the definition of $p$-limited completely continuous operators, $1\le p<\infty$. The question of whether a space of operators has the property that every $p$-limited subset is relative compact when the dual of the domain and the codomain have this property is studied using $p$-limited completely continuous evaluation operators. (English)
Keyword: $p$-limited set
Keyword: limited set
Keyword: space of compact operators
MSC: 46B20
MSC: 46B25
MSC: 46B28
idZBL: Zbl 07790590
idMR: MR4658998
DOI: 10.14712/1213-7243.2023.026
.
Date available: 2023-12-13T13:36:06Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151862
.
Reference: [1] Bahreini M., Bator E., Ghenciu I.: Complemented subspaces of linear bounded operators.Canad. Math. Bull. 55 (2012), no. 3, 449–461. MR 2957262, 10.4153/CMB-2011-097-2
Reference: [2] Bourgain J.: New Classes of $\mathcal{L}_p$-spaces.Lecture Notes in Mathematics, 889, Springer, Berlin, 1981. MR 0639014
Reference: [3] Bourgain J., Diestel J.: Limited operators and strict cosingularity.Math. Nachr. 119 (1984), 55–58. Zbl 0601.47019, MR 0774176, 10.1002/mana.19841190105
Reference: [4] Cilia R., Emmanuele G.: Some isomorphic properties in $K(X, Y)$ and in projective tensor products.Colloq. Math. 146 (2017), no. 2, 239–252. MR 3622375, 10.4064/cm6184-12-2015
Reference: [5] Delgado J. M., Piñeiro C.: A note on $p$-limited sets.J. Math. Appl. 410 (2014), no. 2, 713–718. MR 3111861
Reference: [6] Diestel J.: A survey of results related to the Dunford–Pettis property.Proc. of the Conf. on Integration, Topology, and Geometry in Linear Spaces, Univ. North Carolina, Chapel Hill, N.C., 1979, Contemp. Math., 2, American Mathematical Society, Providence, 1980, pages 15–60. MR 0621850
Reference: [7] Diestel J.: Sequences and Series in Banach Spaces.Graduate Texts in Mathematics, 92, Springer, New York, 1984. MR 0737004
Reference: [8] Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators.Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. Zbl 1139.47021, MR 1342297
Reference: [9] Diestel J., Uhl J. J., Jr.: Vector Measures.Mathematical Surveys, 15, American Mathematical Society, Providence, 1977. Zbl 0521.46035, MR 0453964
Reference: [10] Drewnowski L., Emmanuele G.: On Banach spaces with the Gel'fand–Phillips property. II.Rend. Circ. Mat. Palermo (2) 38 (1989), no. 3, 377–391. MR 1053378, 10.1007/BF02850021
Reference: [11] Emmanuele G.: A dual characterization of Banach spaces not containing $l^1$.Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172
Reference: [12] Emmanuele G.: Banach spaces in which Dunford–Pettis sets are relatively compact.Arch. Math. (Basel) 58 (1992), no. 5, 477–485. MR 1156580, 10.1007/BF01190118
Reference: [13] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators.Quaest. Math. 40 (2017), no. 5, 563–579. MR 3691468, 10.2989/16073606.2017.1301591
Reference: [14] Ghenciu I.: A note on relative compactness in $K(X,Y)$.Ann. Funct. Anal. 7 (2016), no. 3, 470–483. MR 3528378, 10.1215/20088752-3624814
Reference: [15] Ghenciu I.: Dunford–Pettis like properties on tensor products.Quaest. Math. 41 (2018), 811–828. MR 3857131, 10.2989/16073606.2017.1402383
Reference: [16] Ghenciu I.: A note on $p$-limited sets in dual Banach spaces.Monatsh. Math. 200 (2023), no. 2, 255–270. MR 4544297, 10.1007/s00605-022-01738-6
Reference: [17] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets.Colloq. Math. 106 (2006), no. 2, 311–324. MR 2283818, 10.4064/cm106-2-11
Reference: [18] Ghenciu I., Lewis P.: The embeddability of $c_0$ in spaces of operators.Bull. Pol. Acad. Sci. Math. 56 (2008), no. 3–4, 239–256. Zbl 1167.46016, MR 2481977, 10.4064/ba56-3-7
Reference: [19] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces.Glasg. Math. J. 56 (2014), no. 2, 427–437. MR 3187909, 10.1017/S0017089513000360
Reference: [20] Palmer T. W.: Totally bounded sets of precompact linear operators.Proc. Amer. Math. Soc. 20 (1969), 101–106. MR 0235425, 10.1090/S0002-9939-1969-0235425-3
Reference: [21] Pełczyński A., Semadeni Z.: Spaces of continuous functions. III. Spaces $C(\Omega)$ for $\Omega$ without perfect subsets.Studia Math. 18 (1959), 211–222. MR 0107806, 10.4064/sm-18-2-211-222
Reference: [22] Ruess W.: Duality and geometry of spaces of compact operators.Functional Analysis: Surveys and Recent Results, III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland Publishing Co., Amsterdam, 1984, pages 59–78. Zbl 0573.46007, MR 0761373
Reference: [23] Salimi M., Mostaghioun S. M.: The Gelfand–Phillips property in closed subspaces of some operator spaces.Banach J. Math. Anal. 5 (2011), no. 2, 84–92. MR 2792501, 10.15352/bjma/1313363004
Reference: [24] Schlumprecht T.: Limited Sets in Banach Spaces.Ph.D. Dissertation, Ludwigs-Maxmilians-Universität, Münich, 1987.
Reference: [25] Wen Y., Chen J.: Characterizations of Banach spaces with relatively compact Dunford–Pettis sets.Adv. Math. (China) 45 (2016), no. 1, 122–132. MR 3483491
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo