Previous |  Up |  Next

Article

Title: Energy dissipation and hysteresis cycles in pre-sliding transients of kinetic friction (English)
Author: Ruderman, Michael
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 68
Issue: 6
Year: 2023
Pages: 845-860
Summary lang: English
.
Category: math
.
Summary: The problem of transient hysteresis cycles induced by the pre-sliding kinetic friction is relevant for analyzing the system dynamics, e.g., of micro- and nano-positioning instruments and devices and their controlled operation. The associated energy dissipation and consequent convergence of the state trajectories occur due to the structural hysteresis damping of contact surface asperities during reversals, and it is neither exponential (i.e., viscous type) nor finite-time (i.e., Coulomb type). In this paper, we discuss the energy dissipation and convergence during the pre-sliding cycles and show how a piecewise smooth force-displacement hysteresis map enters into the energy balance of an unforced system of the second order. An existing friction modeling approach with a low number of the free parameters, the Dahl model, is then exemplified alongside the developed analysis. (English)
Keyword: hysteresis
Keyword: friction
Keyword: energy dissipation
Keyword: nonlinear convergence
Keyword: stick-slip cycles
MSC: 70E18
MSC: 70K05
MSC: 93C10
MSC: 93C95
idZBL: Zbl 07790548
idMR: MR4669932
DOI: 10.21136/AM.2023.0283-22
.
Date available: 2023-11-23T12:18:04Z
Last updated: 2024-12-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151942
.
Reference: [1] Al-Bender, F., Symens, W., Swevers, J., Brussel, H. Van: Theoretical analysis of the dynamic behavior of hysteresis elements in mechanical systems.Int. J. Non-Linear Mech. 39 (2004), 1721-1735. Zbl 1349.74291, 10.1016/j.ijnonlinmec.2004.04.005
Reference: [2] Armstrong-Hélouvry, B., Dupont, P., Wit, C. C. De: A survey of models, analysis tools and compensation methods for the control of machines with friction.Automatica 30 (1994), 1083-1138. Zbl 0800.93424, 10.1016/0005-1098(94)90209-7
Reference: [3] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. I. Mathematical Modeling and Applications.Elsevier, Amsterdam (2006). Zbl 1117.34045, MR 2307929
Reference: [4] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. II. Physical Modeling, Micromagnetics, and Magnetization Dynamics.Elsevier, Amsterdam (2006). Zbl 1117.34046, MR 2307930
Reference: [5] Bertotti, G., (Eds.), I. D. Mayergoyz: The Science of Hysteresis. Vol. III. Hysteresis in Materials.Elsevier, Amsterdam (2006). Zbl 1117.34047, MR 2307931
Reference: [6] Bliman, P.-A. J.: Mathematical study of the Dahl's friction model.Eur. J. Mech., A 11 (1992), 835-848. Zbl 0766.73059, MR 1196551
Reference: [7] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121. Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8
Reference: [8] Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., Knuth, D. E.: On the Lambert $W$ function.Adv. Comput. Math. 5 (1996), 329-359. Zbl 0863.65008, MR 1414285, 10.1007/BF02124750
Reference: [9] Dahl, P. R.: A Solid Friction Model.Aerospace Corporation, Los Angeles (1968), Available at https://apps.dtic.mil/sti/pdfs/ADA041920.pdf\kern0pt.
Reference: [10] Dahl, P. R.: Solid friction damping of mechanical vibrations.AIAA Journal 14 (1976), 1675-1682. 10.2514/3.61511
Reference: [11] Greenwood, J. A., Minshall, H., Tabor, D.: Hysteresis losses in rolling and sliding friction.Proc. R. Soc. Lond., Ser. A 259 (1961), 480-507. 10.1098/rspa.1961.0004
Reference: [12] Koizumi, T., Shibazaki, H.: A study of the relationships governing starting rolling friction.Wear 93 (1984), 281-290. 10.1016/0043-1648(84)90202-3
Reference: [13] Krejčí, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations.GAKUTO International Series. Mathematical Sciences and Applications 8. Gakkotosho, Tokyo (1996). Zbl 1187.35003, MR 2466538
Reference: [14] Lacarbonara, W., Vestroni, F.: Nonclassical responses of oscillators with hysteresis.Nonlinear Dyn. 32 (2003), 235-258 \99999DOI99999 10.1023/A:1024423626386 . Zbl 1062.70599, 10.1023/A:1024423626386
Reference: [15] Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry friction at low velocities on a developed tribometer setup for macroscopic measurements.Tribology Lett. 16 (2004), 95-105. 10.1023/B:TRIL.0000009719.53083.9e
Reference: [16] Ruderman, M.: Presliding hysteresis damping of LuGre and Maxwell-slip friction models.Mechatronics 30 (2015), 225-230. 10.1016/j.mechatronics.2015.07.007
Reference: [17] Ruderman, M.: Stick-slip and convergence of feedback-controlled systems with Coulomb friction.Asian J. Control 24 (2022), 2877-2887. MR 4525023, 10.1002/asjc.2718
Reference: [18] Ruderman, M., Rachinskii, D.: Use of Prandtl-Ishlinskii hysteresis operators for Coulomb friction modeling with presliding.J. Phys., Conf. Ser. 811 (2017), Article ID 012013, 10 pages. MR 3785348, 10.1088/1742-6596/811/1/012013
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo