Previous |  Up |  Next

Article

Title: Periodic linear groups factorized by mutually permutable subgroups (English)
Author: Ferrara, Maria
Author: Trombetti, Marco
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1229-1254
Summary lang: English
.
Category: math
.
Summary: The aim is to investigate the behaviour of (homomorphic images of) periodic linear groups which are factorized by mutually permutable subgroups. Mutually permutable subgroups have been extensively investigated in the finite case by several authors, among which, for our purposes, we only cite J. C. Beidleman and H. Heineken (2005). In a previous paper of ours (see M. Ferrara, M. Trombetti (2022)) we have been able to generalize the first main result of J. C. Beidleman, H. Heineken (2005) to periodic linear groups (showing that the commutator subgroups and the intersection of mutually permutable subgroups are subnormal subgroups of the whole group), and, in this paper, we completely generalize all other main results of J. C. Beidleman, H. Heineken (2005) to (homomorphic images of) periodic linear groups. (English)
Keyword: mutually permutable subgroup
Keyword: periodic linear group
MSC: 20D40
MSC: 20F19
MSC: 20H20
DOI: 10.21136/CMJ.2023.0485-22
.
Date available: 2023-11-23T12:27:08Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151957
.
Reference: [1] Alejandre, M. J., Ballester-Bolinches, A., Cossey, J.: Permutable products of supersoluble groups.J. Algebra 276 (2004), 453-461. Zbl 1083.20019, MR 2058452, 10.1016/j.jalgebra.2003.01.002
Reference: [2] Amberg, B., Franciosi, S., Giovanni, F. de: Products of Groups.Oxford Mathematical Monographs. Clarendon Press, Oxford (1992). Zbl 0774.20001, MR 1211633
Reference: [3] Asaad, M., Shaalan, A.: On the supersolvability of finite groups.Arch. Math. 53 (1989), 318-326. Zbl 0685.20018, MR 1015994, 10.1007/BF01195210
Reference: [4] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups.de Gruyter Expositions in Mathematics 53. Walter de Gruyter, Berlin (2010). Zbl 1206.20019, MR 2762634, 10.1515/9783110220612
Reference: [5] Beidleman, J., Heineken, H.: Totally permutable torsion subgroups.J. Group Theory 2 (1999), 377-392. Zbl 0941.20026, MR 1718750, 10.1515/jgth.1999.027
Reference: [6] Beidleman, J. C., Heineken, H.: Mutually permutable subgroups and group classes.Arch. Math. 85 (2005), 18-30. Zbl 1103.20015, MR 2155106, 10.1007/s00013-005-1200-2
Reference: [7] Celentani, M. R., Leone, A., Robinson, D. J. S.: The Maier-Schmid problem for infinite groups.J. Algebra 301 (2006), 294-307. Zbl 1121.20029, MR 2230333, 10.1016/j.jalgebra.2005.06.002
Reference: [8] Falco, M. De, Giovanni, F. de, Musella, C., Sysak, Y. P.: On the upper central series of infinite groups.Proc. Am. Math. Soc. 139 (2011), 385-389. Zbl 1228.20023, MR 2736322, 10.1090/S0002-9939-2010-10625-1
Reference: [9] Giovanni, F. de, Ialenti, R.: On groups with finite abelian section rank factorized by mutually permutable subgroups.Commun. Algebra 44 (2016), 118-124. Zbl 1344.20045, MR 3413675, 10.1080/00927872.2014.958850
Reference: [10] Giovanni, F. de, Trombetti, M.: Infinite minimal non-hypercyclic groups.J. Algebra Appl. 14 (2015), Article ID 1550143, 15 pages. Zbl 1331.20044, MR 3392592, 10.1142/S0219498815501431
Reference: [11] Giovanni, F. de, Trombetti, M., Wehrfritz, B. A. F.: Subnormality in linear groups.J. Pure Appl. Algebra 227 (2023), Article ID 107185, 16 pages. Zbl 07584334, MR 4457897, 10.1016/j.jpaa.2022.107185
Reference: [12] Ferrara, M., Trombetti, M.: On groups factorized by mutually permutable subgroups.Result. Math. 77 (2022), Article ID 211, 15 pages. Zbl 07595688, MR 4482267, 10.1007/s00025-022-01734-0
Reference: [13] Franciosi, S., Giovanni, F. de: Groups with many supersoluble subgroups.Ric. Mat. 40 (1991), 321-333. Zbl 0818.20041, MR 1194163
Reference: [14] Hall, P., Higman, G.: On the $p$-length of $p$-soluble groups and reduction theorems for Burnside's problem.Proc. Lond. Math. Soc., III. Ser. 6 (1956), 1-42. Zbl 0073.25503, MR 0072872, 10.1112/plms/s3-6.1.1
Reference: [15] Phillips, R. E., Rainbolt, J. G.: Images of periodic linear groups.Arch. Math. 71 (1998), 97-106. Zbl 0914.20041, MR 1631464, 10.1007/s000130050239
Reference: [16] Robinson, D. J. S.: Finiteness Conditions and Generalized Soluble Groups. Part 1.Ergebnisse der Mathematik und ihrer Grenzgebiete 62. Springer, Berlin (1972). Zbl 0243.20032, MR 0332989, 10.1007/978-3-662-07241-7
Reference: [17] Schmidt, R.: Subgroup Lattices of Groups.De Gruyter Expositions in Mathematics 14. Walter De Gruyter, Berlin (1994). Zbl 0843.20003, MR 1292462, 10.1515/9783110868647
Reference: [18] Shirvani, M., Wehrfritz, B. A. F.: Skew Linear Groups.London Mathematical Society Lecture Note Series 118. Cambridge University Press, Cambridge (1986). Zbl 0602.20046, MR 0883801
Reference: [19] Wehfritz, B. A. F.: Supersoluble and locally supersoluble linear groups.J. Algebra 17 (1971), 41-58. Zbl 0206.31302, MR 0276368, 10.1016/0021-8693(71)90041-X
Reference: [20] Wehfritz, B. A. F.: Infinite Linear Groups: An Account of the Group-Theoretic Properties of Infinite Groups of Matrices.Ergebnisse der Mathematik und ihrer Grenzgebiete 76. Springer, Berlin (1973). Zbl 0261.20038, MR 0335656, 10.1007/978-3-642-87081-1
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo