Previous |  Up |  Next

Article

Title: Special modules for $R({\rm PSL}(2,q))$ (English)
Author: Cao, Liufeng
Author: Chen, Huixiang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1301-1317
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a fusion ring and $R_\mathbb {C}:=R\otimes _\mathbb {Z}\mathbb {C}$ be the corresponding fusion algebra. We first show that the algebra $R_\mathbb {C}$ has only one left (right, two-sided) cell and the corresponding left (right, two-sided) cell module. Then we prove that, up to isomorphism, $R_\mathbb {C}$ admits a unique special module, which is 1-dimensional and given by the Frobenius-Perron homomorphism FPdim. Moreover, as an example, we explicitly determine the special module of the interpolated fusion algebra $R({\rm PSL}(2,q)):=r({\rm PSL}(2,q))\otimes _\mathbb {Z}\mathbb {C}$ up to isomorphism, where $r({\rm PSL}(2,q))$ is the interpolated fusion ring with even $q\geq 2$. (English)
Keyword: Frobenius-Perron theorem
Keyword: special module
Keyword: fusion ring
MSC: 16G99
DOI: 10.21136/CMJ.2023.0002-23
.
Date available: 2023-11-23T12:29:23Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151961
.
Reference: [1] Cao, L. F., Chen, H. X., Li, L. B.: The cell modules of the Green algebra of Drinfel'd quantum double $D(H_4)$.Acta Math. Sin., Engl. Ser. 38 (2022), 1116-1132. Zbl 07550664, MR 4444202, 10.1007/s10114-022-9046-8
Reference: [2] Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories.Mathematical Surveys and Monographs 205. AMS, Providence (2015). Zbl 1365.18001, MR 3242743, 10.1090/surv/205
Reference: [3] Frobenius, G.: Über Matrizen aus positiven Elementen.Berl. Ber. 1908 (1908), 471-476 German \99999JFM99999 39.0213.03 \goodbreak.
Reference: [4] Frobenius, G.: Über Matrizen aus positiven Elementen. II.Berl. Ber. German 1909 (1909), 514-518 \99999JFM99999 40.0202.02.
Reference: [5] Gantmacher, F. R.: The Theory of Matrices. Vol. 1.AMS Chelsea Publishing, Providence (1998). Zbl 0927.15001, MR 1657129
Reference: [6] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras.Invent. Math. 53 (1979), 165-184. Zbl 0499.20035, MR 0560412, 10.1007/BF01390031
Reference: [7] Kildetoft, K., Mazorchuk, V.: Special modules over positively based algebras.Doc. Math. 21 (2016), 1171-1192. Zbl 1369.16016, MR 3578210, 10.4171/DM/555
Reference: [8] Kudryavtseva, G., Mazorchuk, V.: On multisemigroups.Port. Math. (N.S.) 72 (2015), 47-80. Zbl 1333.20070, MR 3323510, 10.4171/PM/1956
Reference: [9] Lin, S., Yang, S.: Representations of a class of positively based algebras.Czech. Math. J. 73 (2023), 811-838. Zbl 7729539, MR 4632859, 10.21136/CMJ.2023.0254-22
Reference: [10] Liu, Z., Palcoux, S., Ren, Y.: Interpolated family of non group-like simple integral fusion rings of Lie type.Available at https://arxiv.org/abs/2102.01663 (2021), 29 pages. MR 4591939
Reference: [11] Lorenz, M.: Some applications of Frobenius algebras to Hopf algebras.Groups, Algebras and Applications Contemporary Mathematics 537. AMS, Providence (2011), 269-289. Zbl 1254.16014, MR 2799106, 10.1090/conm/537
Reference: [12] Lusztig, G.: Leading coefficients of character values of Hecke algebras.Representations of Finite Groups Proceedings of Symposia in Pure Mathematics 47. AMS, Providence (1987), 235-262. Zbl 0657.20037, MR 0933415
Reference: [13] Mazorchuk, V., Miemietz, V.: Cell 2-representations of finitary 2-categories.Compos. Math. 147 (2011), 1519-1545. Zbl 1232.17015, MR 2834731, 10.1112/S0010437X11005586
Reference: [14] Perron, O.: Zur Theorie der Matrices.Math. Ann. 64 (1907), 248-263 German \99999JFM99999 38.0202.01. MR 1511438, 10.1007/BF01449896
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo