Previous |  Up |  Next

Article

Title: On $\Pi $-property of some maximal subgroups of Sylow subgroups of finite groups (English)
Author: Qiu, Zhengtian
Author: Liu, Jianjun
Author: Chen, Guiyun
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 73
Issue: 4
Year: 2023
Pages: 1349-1358
Summary lang: English
.
Category: math
.
Summary: Let $H$ be a subgroup of a finite group $G$. We say that $H$ satisfies the $\Pi $-property in $G$ if for any chief factor $L / K$ of $G$, $| G / K : N_{G / K} ( HK/K\cap L/K )|$ is a $\pi (HK/K\cap L/K) $-number. We study the influence of some $p$-subgroups of $G$ satisfying the $\Pi $-property on the structure of $G$, and generalize some known results. (English)
Keyword: finite group
Keyword: $p$-supersoluble group, $p$-nilpotent group, $\Pi $-property
MSC: 20D10
MSC: 20D20
DOI: 10.21136/CMJ.2023.0089-23
.
Date available: 2023-11-23T12:31:03Z
Last updated: 2023-11-27
Stable URL: http://hdl.handle.net/10338.dmlcz/151964
.
Reference: [1] Ahmad, A. Y. Alsheik, Jaraden, J. J., Skiba, A. N.: On $\mathcal U_c$-normal subgroups of finite groups.Algebra Colloq. 14 (2007), 25-36. Zbl 1126.20012, MR 2278107, 10.1142/S1005386707000041
Reference: [2] Chen, Z.: On a theorem of Srinivasan.J. Southwest Teach. Univ., Ser. B 12 (1987), 1-4 Chinese. Zbl 0732.20008
Reference: [3] Doerk, K., Hawkes, T.: Finite Soluble Groups.De Gruyter Expositions in Mathematics 4. Walter de Gruyter, Berlin (1992). Zbl 0753.20001, MR 1169099, 10.1515/9783110870138
Reference: [4] Ezquerro, L. M., Li, X., Li, Y.: Finite groups with some CAP-subgroups.Rend. Semin. Mat. Univ. Padova 131 (2014), 77-87. Zbl 1317.20013, MR 3217752, 10.4171/RSMUP/131-6
Reference: [5] Gorenstein, D.: Finite Groups.Chelsea Publishing, New York (1980). Zbl 0463.20012, MR 0569209
Reference: [6] Guo, W.: Structure Theory for Canonical Classes of Finite Groups.Springer, Berlin (2015). Zbl 1343.20021, MR 3331254, 10.1007/978-3-662-45747-4
Reference: [7] Guo, W., Shum, K.-P., Skiba, A. N.: $X$-quasinormal subgroups.Sib. Math. J. 48 (2007), 593-605. Zbl 1153.20304, MR 2355370, 10.1007/s11202-007-0061-x
Reference: [8] Huppert, B.: Endliche Gruppen. I.Die Grundlehren der Mathematischen Wissenschaften 134. Springer, Berlin (1967), German. Zbl 0217.07201, MR 0224703, 10.1007/978-3-642-64981-3
Reference: [9] Isaacs, I. M.: Finite Group Theory.Graduate Studies in Mathematics 92. AMS, Providence (2008). Zbl 1169.20001, MR 2426855, 10.1090/gsm/092
Reference: [10] Isaacs, I. M.: Semipermutable $\pi$-subgroups.Arch. Math. 102 (2014), 1-6. Zbl 1297.20018, MR 3154151, 10.1007/s00013-013-0604-2
Reference: [11] Kegel, O. H.: Sylow-Gruppen und Subnormalteiler endlicher Gruppen.Math. Z. 78 (1962), 205-221 German. Zbl 0102.26802, MR 0147527, 10.1007/BF01195169
Reference: [12] Li, B.: On $\Pi$-property and $\Pi$-normality of subgroups of finite groups.J. Algebra 334 (2011), 321-337. Zbl 1248.20020, MR 2787667, 10.1016/j.jalgebra.2010.12.018
Reference: [13] Li, S., He, X.: On normally embedded subgroups of prime power order in finite groups.Commun. Algebra 36 (2008), 2333-2340. Zbl 1146.20015, MR 2418390, 10.1080/00927870701509370
Reference: [14] Li, S., Shen, Z., Liu, J., Liu, X.: The influence of SS-quasinormality of some subgroups on the structure of finite groups.J. Algebra 319 (2008), 4275-4287. Zbl 1152.20019, MR 2407900, 10.1016/j.jalgebra.2008.01.030
Reference: [15] Li, Y. M., He, X. L., Wang, Y. M.: On $s$-semipermutable subgroups of finite groups.Acta Math. Sin., Engl. Ser. 26 (2010), 2215-2222. Zbl 1209.20018, MR 2727302, 10.1007/s10114-010-7609-6
Reference: [16] Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly $s$-semipermutable subgroups of finite groups.J. Algebra 371 (2012), 250-261. Zbl 1269.20020, MR 2975395, 10.1016/j.jalgebra.2012.06.025
Reference: [17] Liu, J., Li, S., Shen, Z., Liu, X.: Finite groups with some CAP-subgroups.Indian J. Pure Appl. Math. 42 (2011), 145-156. Zbl 1309.20011, MR 2823263, 10.1007/s13226-011-0009-5
Reference: [18] Lu, J., Li, S.: On $S$-semipermutable subgroups of finite groups.J. Math. Res. Expo. 29 (2009), 985-991. Zbl 1212.20037, MR 2590215, 10.3770/j.issn:1000-341X.2009.06.005
Reference: [19] Peacock, R. M.: Groups with a cyclic Sylow subgroup.J. Algebra 56 (1979), 506-509. Zbl 0399.20012, MR 0528591, 10.1016/0021-8693(79)90353-3
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo