Previous |  Up |  Next

Article

Title: A characterization of uninorms on bounded lattices via closure and interior operators (English)
Author: Çayli, Gül Deniz
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 59
Issue: 5
Year: 2023
Pages: 768-790
Summary lang: English
.
Category: math
.
Summary: Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms. (English)
Keyword: bounded lattice
Keyword: closure operator
Keyword: uninorm
Keyword: interior operator
Keyword: T-norm
Keyword: T-conorm
MSC: 03B52
MSC: 03E72
MSC: 06B20
MSC: 94D05
MSC: 97E30
idZBL: Zbl 07790661
idMR: MR4681022
DOI: 10.14736/kyb-2023-5-0768
.
Date available: 2023-12-12T16:06:29Z
Last updated: 2024-02-13
Stable URL: http://hdl.handle.net/10338.dmlcz/151987
.
Reference: [1] Aşıci, E.: On the constructions of t-norms and t-conorms on some special classes of bounded lattices..Kybernetika 57 (2021), 352-371. MR 4273580,
Reference: [2] Aşıcı, E., Mesiar, R.: On the direct product of uninorms on bounded lattices..Kybernetika 57 (2021), 989-1004. MR 4376872,
Reference: [3] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners..Springer, Berlin 2007.
Reference: [4] Benítez, J. M., Castro, J. L., Requena, I.: Are artificial neural networks black boxes?.IEEE Trans. Neural Netw. 8 (1997), 1156-1163.
Reference: [5] Birkhoff, G.: Lattice Theory..American Mathematical Society Colloquium Publishers, Providence 1967. Zbl 0537.06001, MR 0227053
Reference: [6] Bodjanova, S., Kalina, M.: Construction of uninorms on bounded lattices..In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014.
Reference: [7] Bodjanova, S., Kalina, M.: Uninorms on bounded lattices - recent development..In: IWIFSGN 2017, EUSFLAT 2017, AISC, vol. 641 J. Kacprzyk et al. eds. Springer, Cham, 2018, pp. 224-234.
Reference: [8] Bodjanova, S., Kalina, M.: Uninorms on bounded lattices with given underlying operations..In: AGOP 2019, AISC, vol. 981 R. Halaś et al. eds. Springer, Cham, 2019, pp. 183-194.
Reference: [9] Çayli, G. D.: Alternative approaches for generating uninorms on bounded lattices..Inf. Sci. 488 (2019), 111-139. MR 3924420, 10.1016/j.ins.2019.03.007
Reference: [10] Çayli, G. D.: New methods to construct uninorms on bounded lattices..Int. J. Approx. Reason. 115 (2019), 254-264. MR 4018632,
Reference: [11] Çayli, G. D.: Construction methods for idempotent nullnorms on bounded lattices..Appl. Math. Comput. 366 (2020), 124746. MR 4011595,
Reference: [12] Çayli, G. D.: Uninorms on bounded lattices with the underlying t-norms and t-conorms..Fuzzy Sets Syst. 395 (2020), 107-129. MR 4109064,
Reference: [13] Çayli, G. D.: On generating of t-norms and t-conorms on bounded lattices..Int. J. Uncertain. Fuzziness Knowl. Based Syst. 28 (2020), 807-835. MR 4155937,
Reference: [14] Çayli, G. D.: New construction approaches of uninorms on bounded lattices..Int. J. Gen. Syst. 50 (2021), 139-158. MR 4222196,
Reference: [15] Çayli, G. D., Karaçal, F., Mesiar, R.: On internal and locally internal uninorms on bounded lattices..Int. J. Gen. Syst. 48 (2019), 235-259. MR 3904571,
Reference: [16] Dan, Y., Hu, B. Q., Qiao, J.: New constructions of uninorms on bounded lattices..Int. J. Approx. Reason. 110 (2019), 185-209. MR 3947797,
Reference: [17] Dan, Y., Hu, B. Q.: A new structure for uninorms on bounded lattices..Fuzzy Sets Syst. 386 (2020), 77-94. MR 4073387,
Reference: [18] Baets, B. De: Idempotent uninorms..European J. Oper. Res. 118 (1999), 631-642. Zbl 1178.03070,
Reference: [19] Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J.: Idempotent uninorms on finite ordinal scales..Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17 (2009), 1-14. Zbl 1178.03070, MR 2514519,
Reference: [20] Drewniak, J., Drygaś, P.: On a class of uninorms..Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10 (2002), 5-10. MR 1962665,
Reference: [21] Drossos, C. A.: Generalized t-norm structures..Fuzzy Sets Syst. 104 (1999), 53-59. MR 1685809,
Reference: [22] Drossos, C. A., Navara, M.: Generalized t-conorms and closure operators..In: Proc. EUFIT '96, Aachen, 1996, pp. 22-26.
Reference: [23] Drygaś, P.: On the structure of continuous uninorms..Kybernetika 43 (2007), 183-196. Zbl 1132.03349, MR 2343394
Reference: [24] Drygaś, P., Rak, E.: Distributivity equation in the class of 2-uninorms..Fuzzy Sets Syst. 291 (2016), 82-97. MR 3463655,
Reference: [25] Dubois, D., Prade, H.: Fundamentals of Fuzzy Sets..Kluwer Academic Publisher, Boston 2000. MR 1890229
Reference: [26] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives..Inf. Sci. 36 (1985), 85-121. Zbl 0582.03040, MR 0813766,
Reference: [27] Engelking, R.: General Topology..Heldermann Verlag, Berlin 1989. Zbl 1281.54001, MR 1039321
Reference: [28] Ertuğrul, Ü., Kesicioğlu, M., Karaçal, F.: Construction methods for uni-nullnorms and null-uninorms on bounded lattice..Kybernetika 55 (2019), 994-1015. MR 4077141,
Reference: [29] Everett, C. J.: Closure operators, Galois theory in lattices..Trans. Am. Math. Soc. 55 (1944), 514-525. MR 0010556,
Reference: [30] Fodor, J., Yager, R. R., Rybalov, A.: Structure of uninorms..Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5 (1997), 411-427. Zbl 1232.03015, MR 1471619,
Reference: [31] González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D.: On the choice of the pair conjunction-implication into the fuzzy morphological edge detector..IEEE Trans. Fuzzy Syst. 23 (2015), 872-884.
Reference: [32] He, P., Wang, X. P.: Constructing uninorms on bounded lattices by using additive generators..Int. J. Approx. Reason. 136 (2021), 1-13. MR 4270087,
Reference: [33] Homenda, W., Jastrzebska, A., Pedrycz, W.: Multicriteria decision making inspired by human cognitive processes..Appl. Math. Comput. 290 (2016), 392-411. MR 3523438,
Reference: [34] Hua, X. J., Ji, W.: Uninorms on bounded lattices constructed by t-norms and t-subconorms..Fuzzy Sets Syst. 427 (2022), 109-131. MR 4343692,
Reference: [35] Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.: An extension method for t-norms on subintervals to t-norms on bounded lattices..Kybernetika 55 (2019), 976-993. MR 4077140,
Reference: [36] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices..Fuzzy Sets Syst. 261 (2015), 33-43. MR 3291484,
Reference: [37] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms..Kluwer Academic Publishers, Dordrecht 2000. Zbl 1087.20041, MR 1790096
Reference: [38] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Position paper I: Basic analytical and algebraic properties..Fuzzy Sets Syst. 143 (2004), 5-26. MR 2060270,
Reference: [39] Klement, E. P., Mesiar, R., Pap, E.: Triangular norms. Position paper II: General constructions and parametrized families..Fuzzy Sets Syst. 145 (2004), 411-438. MR 2075838,
Reference: [40] Medina, J.: Characterizing when an ordinal sum of t-norms is a t-norm on bounded lattices..Fuzzy Sets Syst. 202 (2012), 75-88. MR 2934787,
Reference: [41] Menger, K.: Statistical metrics..PNAS 8 (1942), 535-537. Zbl 0063.03886, MR 0007576, 10.1073/pnas.28.12.535
Reference: [42] Metcalfe, G., Montagna, F.: Substructural fuzzy logics..J. Symb. Log. 72 (2007), 834-864. MR 2354903,
Reference: [43] Ouyang, Y., Zhang, H. P.: Constructing uninorms via closure operators on a bounded lattice..Fuzzy Sets Syst. 395 (2020), 93-106. MR 4109063,
Reference: [44] Sun, X. R., Liu, H. W.: Further characterization of uninorms on bounded lattices..Fuzzy Sets Syst. 427 (2022), 96-108. MR 4343691,
Reference: [45] Saminger, S.: On ordinal sums of triangular norms on bounded lattices..Fuzzy Sets Syts. 157 (2006), 1403-1416. Zbl 1099.06004, MR 2226983,
Reference: [46] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces..Elsevier North-Holland, New York 1983. Zbl 0546.60010, MR 0790314
Reference: [47] Schweizer, B., Sklar, A.: Associative functions and statistical triangular inequalities..Publ. Math. 8 (1961), 169-186. MR 0132939
Reference: [48] Takács, M.: Uninorm-based models for FLC systems..J. Intell. Fuzzy Syst. 19 (2008), 65-73.
Reference: [49] Yager, R. R.: Aggregation operators and fuzzy systems modelling..Fuzzy Sets Syst. 67 (1994), 129-145. MR 1302575,
Reference: [50] Yager, R. R., Rybalov, A.: Uninorm aggregation operators..Fuzzy Sets Syst. 80 (1996), 111-120. Zbl 0871.04007, MR 1389951,
Reference: [51] Yager, R. R.: Uninorms in fuzzy systems modelling..Fuzzy Sets Syst. 122 (2001), 167-175. MR 1839955,
Reference: [52] Yager, R. R.: Defending against strategic manipulation in uninorm-based multi-agent decision making..Fuzzy Sets Syst. 140 (2003), 331-339. Zbl 0998.90046, MR 1925395
Reference: [53] Zhao, B., Wu, T.: Some further results about uninorms on bounded lattices..Int. J. Approx. Reason. 130 (2021), 22-49. MR 4188974,
.

Files

Files Size Format View
Kybernetika_59-2023-5_7.pdf 485.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo