Previous |  Up |  Next

Article

Summary:
V lednu 2022 došlo k erupci tichomořské sopky Hunga Tonga - Hunga Ha'apai. Důsledky této erupce byly velmi rozmanité a v mnoha ohledech mimořádné. V tomto článku uvedeme, jakým způsobem ovlivnil výbuch chemické složení vyšších vrstev atmosféry a jaký to má vliv na teploty a proudění vzduchu. Popíšeme spektrum vln vznikajících v atmosféře při výbuchu v souvislosti s rychlou změnou tlaku. A v neposlední řadě ukážeme i dopad na tvorbu vln v oceánu.
References:
[1] Astafyeva, E.: Ionospheric detection of natural hazards. Rev. Geophys. 57 (2019), 1265–1288. DOI 10.1029/2019RG000668
[2] Astafyeva, E., Maletckii, B., Mikesell, T. D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F., Rolland, L.: The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett. 49 (2022). DOI 10.1029/2022GL098827
[3] Carter, B. A., Pradipta, R., Dao, T., Currie, J. L., Choy, S., Wilkinson, P., Maher, P., Marshall, R., Harima, K., Le Huy, M., Nguyen Chien, T., Nguyen Ha, T., Harris, T. J.: The ionospheric effects of the 2022 Hunga Tonga volcano eruption and the associated impacts on GPS precise point positioning across the Australian region. Space Weather 21 (2023).
[4] Coy, L., Newman, P. A., Wargan, K., Partyka, G., Strahan, S., Pawson, S.: Stratospheric circulation changes associated with the Hunga Tonga – Hunga Ha’apai eruption. Geophys. Res. Lett. 49 (2022).
[5] Dessler, A.: Chemistry and Physics of Stratospheric Ozone. Elsevier, 2000.
[6] Duchamp, C., Wrana, F., Legras, B., Sellitto, P., Belhadji, R., von Savigny, C.: Observation of the aerosol plume from the 2022 Hunga Tonga – Hunga Ha’apai eruption with SAGE III/ISS. Geophys. Res. Lett. 50 (2023). DOI 10.1029/2023GL105076
[7] Evan, S., Brioude, J., Rosenlof, K. H., Gao, R.-S., Portmann, R. W., Zhu, Y., Volkamer, R., Lee, C. F., Metzger, J.-M., Lamy, K.: Rapid ozone depletion after humidification of the stratosphere by the Hunga Tonga eruption. Science 382 (2023). DOI 10.1126/science.adg2551
[8] Fritts, D. C., Alexander, M. J.: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41 (2003).
[9] Fry, B., McCurrach, S.-J., Gledhill, K., Power, W., Williams, M., Angove, M., Arcas, D., Moores, C.: Sensor network warns of stealth tsunamis. Eos 101 (2020).
[10] Garrett, C. J. R.: Atmospheric edge waves. Q. J. R. Meteorol. Soc. 95 (1969), 731–753. DOI 10.1002/qj.49709540607
[11] Gleckler, P., Wigley, T., Santer, B., Gregory, J., AchutaRao, K., Taylor, K.: Krakatoa’s signature persists in the ocean. Nature 439 (2006), 675–675. DOI 10.1038/439675a
[12] Global Volcanism Program: Report on Hunga Tonga – Hunga Ha’apai (Tonga). Bulletin of the Global Volcanism Network 47 (2022).
[13] Harris, B. M., Highwood, E.: A simple relationship between volcanic sulfate aerosol optical depth and surface temperature change simulated in an atmosphere-ocean general circulation model. J. Geophys. Res. Atmos. 116 (2011).
[14] Jenkins, S., Smith, C., Allen, M., Grainger, R.: Tonga eruption increases chance of temporary surface temperature anomaly above 1.5 °C. Nat. Clim. Chang. 13 (2023), 127–129. DOI 10.1038/s41558-022-01568-2
[15] Labitzke, K., McCormick, M.: Stratospheric temperature increases due to Pinatubo aerosols. Geophys. Res. Lett. 19 (1992), 207–210. DOI 10.1029/91GL02940
[16] Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond. A 93 (1917), 114–128.
[17] Lin, J.-T., Rajesh, P. K., Lin, C. C. H., Chou, M.-Y., Liu, J.-Y., Yue, J., Hsiao, T.-Y., Tsai, H.-F., Chao, H.-M., Kung, M.-M.: Rapid conjugate appearance of the giant ionospheric Lamb wave signatures in the Northern hemisphere after Hunga–Tonga volcano eruptions. Geophys. Res. Lett. 49 (2022).
[18] Lu, J., Lou, S., Huang, X., Xue, L., Ding, K., Liu, T., Ma, Y., Wang, W., Ding, A.: Stratospheric aerosol and ozone responses to the Hunga Tonga – Hunga Ha’apai volcanic eruption. Geophys. Res. Lett. 50 (2023).
[19] Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa’anunu, O., Bosserelle, C., Jaffe, B., La Selle, S., Ritchie, A., Snyder, A., Nasr, B., Bott, J., Graehl, N., Synolakis, C., Ebrahimi, B., Cinar, G. E.: Diverse tsunamigenesis triggered by the Hunga Tonga – Hunga Ha’apai eruption. Nature 609 (2022), 728–733. DOI 10.1038/s41586-022-05170-6
[20] Manneela, S., Kumar, S.: Overview of the Hunga Tonga – Hunga Ha’apai volcanic eruption and tsunami. J. Geol. Soc. India 98 (2022), 299–304. DOI 10.1007/s12594-022-1980-7
[21] Millan, L., Santee, M. L., Lambert, A., Livesey, N. J., Werner, F., Schwartz, M. J., Pumphrey, H. C., Manney, G. L., Wang, Y., Su, H.: The Hunga Tonga – Hunga Ha’apai hydration of the stratosphere. Geophys. Res. Lett. 49 (2022). DOI 10.1029/2022GL099381
[22] Oppenheimer, C.: Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog. Phys. Geogr. 27 (2003), 230–259.
[23] Pakoksung, K., Suppasri, A., Imamura, F.: The near-field tsunami generated by the 15 January 2022 eruption of the Hunga Tonga – Hunga Ha’apai volcano and its impact on Tongatapu, Tonga. Sci. Rep. 12 (2022), 15187. DOI 10.1038/s41598-022-19486-w
[24] Pedlosky, J.: Waves in the ocean and atmosphere. Springer, 2003.
[25] Ramírez-Herrera, M. T., Coca, O., Vargas-Espinosa, V.: Tsunami effects on the coast of Mexico by the Hunga Tonga – Hunga Ha’apai volcano eruption, Tonga. Pure Appl. Geophys. 179 (2022), 1117–1137. DOI 10.1007/s00024-022-03017-9
[26] Read, W., Froidevaux, L., Waters, J.: Microwave limb sounder measurement of stratospheric SO$_2$ from the Mt. Pinatubo volcano. Geophys. Res. Lett. 20 (1993), 1299–1302. DOI 10.1029/93GL00831
[27] Schoeberl, M., Wang, Y., Ueyama, R., Dessler, A., Taha, G., Yu, W.: The estimated climate impact of the Hunga Tonga – Hunga Ha’apai eruption plume. Geophys. Res. Lett. 50 (2023).
[28] Schoeberl, M. R., Wang, Y., Ueyama, R., Taha, G., Jensen, E., Yu, W.: Analysis and impact of the Hunga Tonga – Hunga Ha’apai stratospheric water vapor plume. Geophys. Res. Lett. 49 (2022).
[29] Seinfeld, J. H., Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons, 2016.
[30] Setvák, M., Kaňák, J., Spurný, P., Borovička, J.: Waves generated by Hunga Tonga eruption. Convection Working Group of EUMETSAT Workshop, 16–20 May 2022, Budapest, 2022.
[31] Smith, I. E., Price, R. C.: The Tonga–Kermadec arc and Havre–Lau back-arc system: Their role in the development of tectonic and magmatic models for the western Pacific. J. Volcanol. Geotherm 156 (2006), 315–331. DOI 10.1016/j.jvolgeores.2006.03.006
[32] Stober, G., Liu, A., Kozlovsky, A., Qiao, Z., Krochin, W., Shi, G., Kero, J., Tsutsumi, M., Gulbrandsen, N., Nozawa, S., Lester, M., Baumgarten, K., Belova, E., Mitchell, N.: Identifying gravity waves launched by the Hunga Tonga – Hunga Ha’apai volcanic eruption in mesosphere/lower-thermosphere winds derived from CONDOR and the Nordic Meteor Radar Cluster. Ann. Geophys. 41 (2023), 197–208. DOI 10.5194/angeo-41-197-2023
[33] Stocker, M., Ladstädter, F., Wilhelmsen, H., Steiner, A. K.: Quantifying stratospheric temperature signals and climate imprints from post-2000 volcanic eruptions. Geophys. Res. Lett. 46 (2019), 12486–12494. DOI 10.1029/2019GL084396
[34] Taylor, G. I.: Waves and tides in the atmosphere. Proc. R. Soc. Lond. A 126 (1929), 169–183. DOI 10.1098/rspa.1929.0213
[35] Toohey, M., Krüger, K., Bittner, M., Timmreck, C., Schmidt, H.: The impact of volcanic aerosol on the Northern hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmos. Chem. Phys. 14 (2014), 13063–13079. DOI 10.5194/acp-14-13063-2014
[36] Villalonga, J., Amores, À., Monserrat, S., Marcos, M., Gomis, D., Jordà, G.: Observational study of the heterogeneous global meteotsunami generated after the Hunga Tonga – Hunga Ha’apai volcano eruption. Sci. Rep. 13 (2023). DOI 10.1038/s41598-023-35800-6
[37] Wang, X., Randel, W., Zhu, Y., Tilmes, S., Starr, J., Yu, W., Garcia, R., Toon, B., Park, M., Kinnison, D.: Stratospheric climate anomalies and ozone loss caused by the Hunga Tonga volcanic eruption. Authorea Preprints (2022).
[38] Witze, A.: Why the Tongan eruption will go down in the history of volcanology. Nature 602 (2022), 376–378. DOI 10.1038/d41586-022-00394-y
[39] Wright, C. J., Hindley, N. P., Alexander, M. J., Barlow, M., Hoffmann, L., Mitchell, C. N., Prata, F., Bouillon, M., Carstens, J., Clerbaux, C., Osprey, S. M., Powell, N., Randall, C. E., Yue, J.: Surface-to-space atmospheric waves from Hunga Tonga – Hunga Ha’apai eruption. Nature 609 (2022), 741–746. DOI 10.1038/s41586-022-05012-5
[40] Zhang, S.-R., Vierinen, J., Aa, E., Goncharenko, L. P., Erickson, P. J., Rideout, W., Coster, A. J., Spicher, A.: 2022 Tonga volcanic eruption induced global propagation of ionospheric disturbances via Lamb waves. Front. Astron. Space Sci. 9 (2022).
[41] Zhu, Y., Bardeen, C. G., Tilmes, S., Mills, M. J., Wang, X., Harvey, V. L., Taha, G., Kinnison, D., Portmann, R. W., Yu, P.: Perturbations in stratospheric aerosol evolution due to the water-rich plume of the 2022 Hunga–Tonga eruption. Commun. Earth Environ. 3 (2022), 248. DOI 10.1038/s43247-022-00580-w
Partner of
EuDML logo