Previous |  Up |  Next

Article

Title: Asymptotic modeling of the transient response of nonlinear Kelvin-Voigt viscoelastic thin plates with Norton or Tresca friction by Trotter theory (English)
Author: Terapabkajornded, Yotsawat
Author: Orankitjaroen, Somsak
Author: Licht, Christian
Author: Weller, Thibaut
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 1
Year: 2024
Pages: 25-48
Summary lang: English
.
Category: math
.
Summary: We study the dynamic response of a thin viscoelastic plate made of a nonlinear Kelvin-Voigt material in bilateral contact with a rigid body along a part of its lateral boundary with Norton or Tresca friction. We opt for a direct use of the Trotter theory of convergence of semi-groups of operators acting on variable spaces. Depending on the various relative behaviors of the physical and geometrical data of the problem, the asymptotic analysis of its unique solution leads to different limit models whose properties are detailed. We highlight the appearance of an additional state variable that allows us to write these limit systems of equations in the same form as the genuine problem. (English)
Keyword: thin viscoelastic plate
Keyword: Norton or Tresca friction
Keyword: transient problem
Keyword: multivalued operator
Keyword: nonlinear semigroup of operators
Keyword: Trotter's theory of convergence of semi-groups
MSC: 74-10
DOI: 10.21136/AM.2023.0013-23
.
Date available: 2024-02-26T10:54:34Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152251
.
Reference: [1] Allaire, G.: Homogenization and two-scale convergence.SIAM J. Math. Anal. 23 (1992), 1482-1518. Zbl 0770.35005, MR 1185639, 10.1137/0523084
Reference: [2] Bobrowski, A.: Convergence of One-Parameter Operator Semi-Groups in Models of Mathematical Biology and Elsewhere.New Mathematical Monographs 30. Cambridge University Press, Cambridge (2016). Zbl 1345.47001, MR 3526064, 10.1017/CBO9781316480663
Reference: [3] Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies 5. North-Holland, Amsterdam (1973), French. Zbl 0252.47055, MR 0348562, 10.1016/s0304-0208(08)x7125-71
Reference: [4] Ciarlet, P. G.: Mathematical Elasticity. Vol. 2. Theory of Plates.Studies in Mathematics and Its Applications 27. North Holland, Amsterdam (1997). Zbl 0888.73001, MR 1477663
Reference: [5] Francfort, G., Leguillon, D., Suquet, P.: Homogénéisation de milieux viscoélastiques linéaires de Kelvin-Voigt.C. R. Acad. Sci., Paris, Sér. I 296 (1983), 287-290 French. Zbl 0534.73031, MR 0693795
Reference: [6] Gaudiello, A., Monneau, R., Mossino, J., Murat, F., Sili, A.: Junction of elastic plates and beams.ESAIM, Control Optim. Calc. Var. 13 (2007), 419-457. Zbl 1133.35322, MR 2329170, 10.1051/cocv:2007036
Reference: [7] Iosifescu, O., Licht, C.: Transient response of a thin linearly elastic plate with Norton or Tresca friction.Asymptotic Anal. 128 (2022), 555-570. Zbl 1504.35536, MR 4438595, 10.3233/ASY-211717
Reference: [8] Iosifescu, O., Licht, C., Michaille, G.: Nonlinear boundary conditions in Kirchhoff-Love plate theory.J. Elasticity 96 (2009), 57-79. Zbl 1273.74172, MR 2504825, 10.1007/s10659-009-9198-0
Reference: [9] Licht, C.: Thin linearly viscoelastic Kelvin-Voigt plates.C. R., Méc., Acad. Sci. Paris 341 (2013), 697-700. 10.1016/j.crme.2013.06.005
Reference: [10] Licht, C., Weller, T.: Approximation of semi-groups in the sense of Trotter and asymptotic mathematical modeling in physics of continuous media.Discrete Contin. Dyn. Syst., Ser. S 12 (2019), 1709-1741. Zbl 1462.82030, MR 3984717, 10.3934/dcdss.2019114
Reference: [11] Licht, C., Weller, T.: Asymptotic analysis of a thin linearly elastic plate equipped with a periodic distribution of stiffeners.C. R., Méc., Acad. Sci. Paris 347 (2019), 555-560. 10.1016/j.crme.2019.07.001
Reference: [12] Migórski, S., Ochal, A., Sofonea, M.: Analysis of a frictional contact problem for viscoelastic materials with long memory.Discrete Contin. Dyn. Syst., Ser. B 15 (2011), 687-705. Zbl 1287.74026, MR 2774134, 10.3934/dcdsb.2011.15.687
Reference: [13] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization.SIAM J. Math. Anal. 20 (1989), 608-623. Zbl 0688.35007, MR 0990867, 10.1137/0520043
Reference: [14] Terapabkajornded, Y., Orankitjaroen, S., Licht, C.: Asymptotic model of linearly viscoelastic Kelvin-Voigt type plates via Trotter theory.Adv. Difference Equ. 2019 (2019), Article ID 186, 9 pages. Zbl 1459.74023, MR 3950287, 10.1186/s13662-019-2104-6
Reference: [15] Trotter, H. F.: Approximation of semi-groups of operators.Pac. J. Math. 8 (1958), 887-919. Zbl 0099.10302, MR 0103420, 10.2140/pjm.1958.8.887
Reference: [16] Zhikov, V. V., Pastukhova, S. E.: On the Trotter-Kato theorem in a variable space.Funct. Anal. Appl. 41 (2007), 264-270. Zbl 1158.47027, MR 2411603, 10.1007/s10688-007-0024-9
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo