Previous |  Up |  Next

Article

Title: A new block triangular preconditioner for three-by-three block saddle-point problem (English)
Author: Li, Jun
Author: Xiong, Xiangtuan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 1
Year: 2024
Pages: 67-91
Summary lang: English
.
Category: math
.
Summary: In this paper, to solve the three-by-three block saddle-point problem, a new block triangular (NBT) preconditioner is established, which can effectively avoid the solving difficulty that the coefficient matrices of linear subsystems are Schur complement matrices when the block preconditioner is applied to the Krylov subspace method. Theoretical analysis shows that the iteration method produced by the NBT preconditioner is unconditionally convergent. Besides, some spectral properties are also discussed. Finally, numerical experiments are provided to show the effectiveness of the NBT preconditioner. (English)
Keyword: three-by-three block saddle-point problems
Keyword: matrix splitting
Keyword: convergence
Keyword: preconditioning, GMRES method
MSC: 65F08
MSC: 65F10
MSC: 65F50
DOI: 10.21136/AM.2023.0289-22
.
Date available: 2024-02-26T10:55:48Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152253
.
Reference: [1] Abdolmaleki, M., Karimi, S., Salkuyeh, D. K.: A new block-diagonal preconditioner for a class of $3 \times 3$ block saddle point problems.Mediterr. J. Math. 19 (2022), Article ID 43, 15 pages. Zbl 1481.65048, MR 4371180, 10.1007/s00009-021-01973-5
Reference: [2] Aslani, H., Salkuyeh, D. K.: Semi-convergence of the APSS method for a class of nonsymmetric three-by-three singular saddle point problems.Available at https://arxiv.org/abs/2208.00814 (2022), 17 pages. MR 4591480
Reference: [3] Aslani, H., Salkuyeh, D. K., Beik, F. P. A.: On the preconditioning of three-by-three block saddle point problems.Filomat 15 (2021), 5181-5194. MR 4394237, 10.2298/FIL2115181A
Reference: [4] Cao, Y.: Shift-splitting preconditioners for a class of block three-by-three saddle point problems.Appl. Math. Lett. 96 (2019), 40-46. Zbl 07111438, MR 3946364, 10.1016/j.aml.2019.04.006
Reference: [5] Cao, Y.: A block positive-semidefinite splitting preconditioner for generalized saddle point linear systems.J. Comput. Appl. Math. 374 (2020), Article ID 112787, 15 pages. Zbl 1434.65087, MR 4067982, 10.1016/j.cam.2020.112787
Reference: [6] Degond, P., Raviart, P.-A.: An analysis of the Darwin model of approximation to Maxwell's equations.Forum Math. 4 (1992), 13-44. Zbl 0755.35137, MR 1142472, 10.1515/form.1992.4.13
Reference: [7] Elman, H. C., Ramage, A., Silvester, D. J.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow.ACM Trans. Math. Softw. 33 (2007), Article ID 14, 18 pages. Zbl 1365.65326, MR 2326956, 10.1145/1236463.1236469
Reference: [8] Han, D., Yuan, X.: Local linear convergence of the alternating direction method of multipliers for quadratic programs.SIAM J. Numer. Anal. 51 (2013), 3446-3457. Zbl 1285.90033, MR 3143838, 10.1137/120886753
Reference: [9] Hu, K., Xu, J.: Structure-preserving finite element methods for stationary MHD models.Math. Comput. 88 (2019), 553-581. Zbl 1405.65151, MR 3882276, 10.1090/mcom/3341
Reference: [10] Huang, N.: Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems.Numer. Algorithms 85 (2020), 1233-1254. Zbl 1455.65049, MR 4190815, 10.1007/s11075-019-00863-y
Reference: [11] Huang, N., Dai, Y.-H., Hu, Q.: Uzawa methods for a class of block three-by-three saddle-point problems.Numer. Linear Algebra Appl. 26 (2019), Article ID e2265, 26 pages. Zbl 1463.65046, MR 4033762, 10.1002/nla.2265
Reference: [12] Huang, N., Ma, C.-F.: Spectral analysis of the preconditioned system for the $3 \times 3$ block saddle point problem.Numer. Algorithms 81 (2019), 421-444. Zbl 1454.65019, MR 3953154, 10.1007/s11075-018-0555-6
Reference: [13] Huang, Y.-M.: A practical formula for computing optimal parameters in the HSS iteration methods.J. Comput. Appl. Math. 255 (2014), 142-149. Zbl 1291.65100, MR 3093411, 10.1016/j.cam.2013.01.023
Reference: [14] Huang, Z.-G., Wang, L.-G., Xu, Z., Cui, J.-J.: An efficient preconditioned variant of the PSS preconditioner for generalized saddle point problems.Appl. Math. Comput. 376 (2020), Article ID 125110, 26 pages. Zbl 1474.65063, MR 4068949, 10.1016/j.amc.2020.125110
Reference: [15] Meng, L., Li, J., Miao, S.-X.: A variant of relaxed alternating positive semi-definite splitting preconditioner for double saddle point problems.Japan J. Ind. Appl. Math. 38 (2021), 979-998. Zbl 1483.65048, MR 4304920, 10.1007/s13160-021-00467-x
Reference: [16] Monk, P.: Analysis of a finite element method for Maxwell's equations.SIAM J. Numer. Anal. 29 (1992), 714-729. Zbl 0761.65097, MR 1163353, 10.1137/0729045
Reference: [17] Saad, Y.: Iterative Methods for Sparse Linear Systems.SIAM, Philadephia (2003). Zbl 1031.65046, MR 1990645, 10.1137/1.9780898718003
Reference: [18] Salkuyeh, D. K., Aslani, H., Liang, Z.-Z.: An alternating positive semidefinite splitting preconditioner for the three-by-three block saddle point problems.Math. Commun. 26 (2021), 177-195. Zbl 07424441, MR 4297389
Reference: [19] Wang, L., Zhang, K.: Generalized shift-splitting preconditioner for saddle point problems with block three-by-three structure.Open Access Library J. 6 (2019), Article ID e5968, 13 pages. MR 3615979, 10.4236/oalib.1105968
Reference: [20] Wang, N.-N., Li, J.-C.: On parameterized block symmetric positive definite preconditioners for a class of block three-by-three saddle point problems.J. Comput. Appl. Math. 405 (2022), Article ID 113959, 15 pages. Zbl 1480.65067, MR 4355119, 10.1016/j.cam.2021.113959
Reference: [21] Xie, X., Li, H.-B.: A note on preconditioning for the $3 \times 3$ block saddle point problem.Comput. Math. Appl. 79 (2020), 3289-3296. Zbl 1452.65054, MR 4094767, 10.1016/j.camwa.2020.01.022
Reference: [22] Young, D. M.: Iterative Solution of Large Linear Systems.Computer Science and Applied Mathematics. Academic Press, New York (1971). Zbl 0231.65034, MR 0305568, 10.1016/c2013-0-11733-3
Reference: [23] Zhang, N., Li, R.-X., Li, J.: Lopsided shift-splitting preconditioner for saddle point problems with three-by-three structure.Comput. Appl. Math. 41 (2022), Articles ID 261, 16 pages. Zbl 1513.65061, MR 4458078, 10.1007/s40314-022-01944-w
Reference: [24] Zhu, J.-L., Wu, Y.-J., Yang, A.-L.: A two-parameter block triangular preconditioner for double saddle point problem arising from liquid crystal directors modeling.Numer. Algorithms 89 (2022), 987-1006. Zbl 1484.65058, MR 4376676, 10.1007/s11075-021-01142-5
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo