[1] Allen, R. G. D.: 
The assumptions of linear regression. Economica 6 (1939), 191-201. 
DOI 10.2307/2548931[6] Cui, H.: 
Asymptotic normality of $M$-estimates in the EV model. Syst. Sci. Math. Sci. 10 (1997), 225-236. 
MR 1469182 | 
Zbl 0905.62072[8] Deng, X., Tang, X.-F., Wang, S.-J., Wang, X.-J.: 
On the strong convergence properties for weighted sums of negatively orthant dependent random variables. Appl. Math., Ser. B (Engl. Ed.) 33 (2018), 35-47. 
DOI 10.1007/s11766-018-3423-1 | 
MR 3779102 | 
Zbl 1399.60082[11] Hu, T.: 
Negatively superadditive dependence of random variables with applications. Chin. J. Appl. Probab. Stat. 16 (2000), 133-144. 
MR 1812714 | 
Zbl 1050.60502[15] Shen, A.: 
Bernstein-type inequality for widely dependent sequence and its application to nonparametric regression models. Abstr. Appl. Anal. 2013 (2013), Article ID 862602, 9 pages. 
DOI 10.1155/2013/862602 | 
MR 3081600 | 
Zbl 1470.62056[16] Shen, A., Yao, M., Wang, W., Volodin, A.: 
Exponential probability inequalities for WNOD random variables and their applications. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM 110 (2016), 251-268. 
DOI 10.1007/s13398-015-0233-7 | 
MR 3462086 | 
Zbl 1334.60040[17] Sung, S. H.: 
Almost sure convergence for weighted sums of i.i.d. random variables. II. Bull. Korean Math. Soc. 33 (1996), 419-425. 
MR 1419389 | 
Zbl 0865.60021[21] Wang, X., Xu, C., Hu, T.-C., Volodin, A., Hu, S.: 
On complete convergence for widely orthant-dependent random variables and its applications in nonparametric regression models. TEST 23 (2014), 607-629. 
DOI 10.1007/s11749-014-0365-7 | 
MR 3252097 | 
Zbl 1307.60024[25] Wu, Q. Y.: Probability Limit Theory for Mixing Sequences. Science Press of China, Beijing (2006).