Previous |  Up |  Next

Article

Title: On the stability analysis of Darboux problem on both bounded and unbounded domains (English)
Author: Çelik, Canan
Author: Develi, Faruk
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 69
Issue: 1
Year: 2024
Pages: 139-150
Summary lang: English
.
Category: math
.
Summary: In this paper, we first investigate the existence and uniqueness of solution for the Darboux problem with modified argument on both bounded and unbounded domains. Then, we derive different types of the Ulam stability for the proposed problem on these domains. Finally, we present some illustrative examples to support our results. (English)
Keyword: Darboux problem
Keyword: partial differential equation
Keyword: Ulam-Hyers stability
Keyword: Ulam-Hyers-Rassias stability
Keyword: Wendorff lemma
MSC: 34A12
MSC: 35L70
MSC: 47H10
DOI: 10.21136/AM.2023.0200-22
.
Date available: 2024-02-26T10:57:57Z
Last updated: 2024-03-04
Stable URL: http://hdl.handle.net/10338.dmlcz/152256
.
Reference: [1] Bainov, D., Simeonov, P.: Integral Inequalities and Applications.Mathematics and Its Applications. East European Series 57. Kluwer Academic Publishers, Dordrecht (1992). Zbl 0759.26012, MR 1171448, 10.1007/978-94-015-8034-2
Reference: [2] Brzdęk, J., Popa, D., Raşa, I.: Hyers-Ulam stability with respect to gauges.J. Math. Anal. Appl. 453 (2017), 620-628. Zbl 1404.34016, MR 3641794, 10.1016/j.jmaa.2017.04.022
Reference: [3] Brzdęk, J., Popa, D., (eds.), T. M. Rassias: Ulam Type Stability.Springer, Cham (2019). Zbl 1431.39001, MR 3971238, 10.1007/978-3-030-28972-0
Reference: [4] Çelik, C., Develi, F.: Existence and Hyers-Ulam stability of solutions for a delayed hyperbolic partial differential equation.Period. Math. Hung. 84 (2022), 211-220. Zbl 07551294, MR 4423476, 10.1007/s10998-021-00400-2
Reference: [5] Dezső, G.: The Darboux-Ionescu problem for a third order system of hyperbolic equations.Libertas Math. 21 (2001), 27-33. Zbl 0994.35080, MR 1867764
Reference: [6] Huang, J., Li, Y.: Hyers-Ulam stability of delay differential equations of first order.Math. Nachr. 289 (2016), 60-66. Zbl 1339.34082, MR 3449100, 10.1002/mana.201400298
Reference: [7] Jonesco, D. V.: Sur une classe d'équations fonctionnelles.Annales Toulouse (3) 19 (1927), 39-92 French \99999JFM99999 53.0477.03. MR 1508394, 10.5802/afst.343
Reference: [8] Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order.Appl. Math. Lett. 17 (2004), 1135-1140. Zbl 1061.34039, MR 2091847, 10.1016/j.aml.2003.11.004
Reference: [9] Jung, S.-M.: A fixed point approach to the stability of a Volterra integral equation.Fixed Point Theory Appl. 2007 (2007), Article ID 57064, 9 pages. Zbl 1155.45005, MR 2318689, 10.1155/2007/57064
Reference: [10] Jung, S.-M.: Hyers-Ulam stability of linear partial differential equations of first order.Appl. Math. Lett. 22 (2009), 70-74. Zbl 1163.39308, MR 2484284, 10.1016/j.aml.2008.02.006
Reference: [11] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis.Springer Optimization and Its Applications 48. Springer, New York (2011). Zbl 1221.39038, MR 2790773, 10.1007/978-1-4419-9637-4
Reference: [12] Kwapisz, M., Turo, J.: On the existence and uniqueness of solutions of Darboux problem for partial differential-functional equations.Colloq. Math. 29 (1974), 279-302. Zbl 0284.35036, MR 0364918, 10.4064/cm-29-2-279-302
Reference: [13] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Stability Analysis of Nonlinear Systems.Pure and Applied Mathematics 125. Marcel Dekker, New York (1989). Zbl 0676.34003, MR 0984861, 10.1007/978-3-319-27200-9
Reference: [14] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation.J. Math. Anal. Appl. 385 (2012), 86-91. Zbl 1236.39030, MR 2832076, 10.1016/j.jmaa.2011.06.025
Reference: [15] Lungu, N., Popa, D.: Hyers-Ulam stability of some partial differential equation.Carpatian J. Math. 30 (2014), 327-334. Zbl 1349.35035, MR 3362855, 10.37193/CJM.2014.03.11
Reference: [16] Lungu, N., Rus, I. A.: Ulam stability of nonlinear hyperbolic partial differential equations.Carpatian J. Math. 24 (2008), 403-408. Zbl 1249.35219
Reference: [17] Marian, D., Ciplea, S. A., Lungu, N.: Ulam-Hyers stability of Darboux-Ionescu problem.Carpatian J. Math. 37 (2021), 211-216. Zbl 07445719, MR 4264071, 10.37193/CJM.2021.02.07
Reference: [18] Otrocol, D., llea, V.: Ulam stability for a delay differential equation.Cent. Eur. J. Math. 11 (2013), 1296-1303. Zbl 1275.34098, MR 3047057, 10.2478/s11533-013-0233-9
Reference: [19] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation.J. Math. Anal. Appl. 381 (2011), 530-537. Zbl 1222.34069, MR 2802090, 10.1016/j.jmaa.2011.02.051
Reference: [20] Popa, D., Raşa, I.: Hyers-Ulam stability of the linear differential operator with nonconstant coefficients.Appl. Math. Comput. 219 (2012), 1562-1568. Zbl 1368.34075, MR 2983863, 10.1016/j.amc.2012.07.056
Reference: [21] Rus, I. A.: On a problem of Darboux-Ionescu.Stud. Univ. Babeş-Bolyai Math. 26 (1981), 43-45. Zbl 0534.35018, MR 0653967
Reference: [22] Rus, I. A.: Picard operators and applications.Sci. Math. Jpn. 58 (2003), 191-219. Zbl 1031.47035, MR 1987831
Reference: [23] Rus, I. A.: Fixed points, upper and lower fixed points: Abstract Gronwall lemmas.Carpathian J. Math. 20 (2004), 125-134. Zbl 1113.54304, MR 2138535
Reference: [24] Rus, I. A.: Ulam stability of ordinary differential equations.Stud. Univ. Babeş-Bolyai Math. 54 (2009), 125-133. Zbl 1224.34165, MR 2602351
Reference: [25] Teodoru, G.: The data dependence for the solutions of Darboux-Ionescu problem for a hyperbolic inclusion of third order.Fixed Point Theory 7 (2006), 127-146. Zbl 1113.35116, MR 2242321
Reference: [26] Zada, A., Ali, W., Park, C.: Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type.Appl. Math. Comput. 350 (2019), 60-65. Zbl 1428.34087, MR 3899985, 10.1016/j.amc.2019.01.014
.

Fulltext not available (moving wall 24 months)

Partner of
EuDML logo